
PREFACE

Any new journal begins as an idea in the minds of its editors. This idea is
reflected in an initial editorial policy. Then, as the journal develops, this initial
policy is expanded and modified by the interchange of ideas that occurs among the
editors, authors, referees and readers. In this way the journal can transcend the
original vision of its founders and increase its usefulness to the scientific community.

To encourage this interchange we present some of the concepts that have
guided us thus far. We invite your comments on these ideas and on the contents of
this and future issues.

We see several trends related to mathematics and computing:
(1) There is an increasing realization that computer science and computer appli-
cations have important and useful mathematical foundations.
(2) In many mathematical disciplines there is an increasing amount of work which
is motivated by computational problems or in which computational issues are
crucial. This has led to an increasing interchange of ideas across disciplines using
computer oriented concepts as the unifying thread.
(3) The implications of these new mathematical results are important to both
those interested in computers per se and those interested in using computers to
solve problems in other application areas.
(4) This new mathematics is not only of theoretical interest, but is useful to com-
puter people in their everyday work. The "art" of computers and computer usage
is rapidly becoming a "science" and that science is based on mathematics.
These trends imply that results in a wide spectrum of mathematical disciplines are
of increasing interest to a great many applied mathematicians who are involved
with computers and computation. Thus it is particularly appropriate that SIAM
undertake to publish a new journal on the mathematics of computers and
computing.

SIAM Journal on Computing (SICOMP) is a mathematics journal serving the
computing community. We shall attempt to bring together in one journal all the
mathematical disciplines related to the nonnumerical aspects of computers and
computing. We shall encourage our authors to explain fully the implications of
their results for real computing problems.

In preparing this issue, several questions of editorial policy have arisen.
We would like to share our current thoughts on these questions with you and invite
your comments.
(1) What exactly is a "mathematical contribution to computers or computing"?
This is not a trivial question since we are talking about a wide spectrum of mathe-
matical disciplines and a range of application areas, some of which may be only
indirectly associated with computers. We must confess, although we think we have
a good intuitive feel for what we mean, we have not been able to write down a
completely satisfactory answer to this question. Perhaps the best one sentence
description of our ideas is: The mathematics must either be directed towards com-
puters or involve, in an essential way, computational issues such as computation
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time, storage space or data structures.
(2) What should be our policy with respect to the publication of algorithms? Our
initial thought is that SICOMP is concerned with the theory of algorithms and is
not a journal where a compendium of useful algorithms appears. This implies we
publish only algorithms that involve interesting mathematics. The fact that an
algorithm works is not necessarily an interesting mathematical result.
(3) What should be our policy with respect to the publication of descriptions of
new programming languages? Our initial thought is that most new programming
languages are not contributions to mathematics and hence would not be appropri-
ate for SICOMP. However, a new language could conceivably be of sufficient
interest mathematically, or of sufficient interest to mathematicians that we would
want to publish its description.

We welcome your comments on any of these questions and on any other
subject relevant to the journal. We hope you find our first issue interesting and
useful. With your help we will make SICOMP even more interesting and useful in
the years to come.

PHILIP M. LEWIS II
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Abstract. We provide a set of transformations capable of transforming a straight line program into

any other equivalent one assuming no algebraic laws hold. We then show that optimization of straight
line code under "reasonable" cost criteria can always be accomplished by applying sequences of these
transformations in a prescribed order.

Keywords. Programming theory, code optimization, straight line programs, optimizing transfor-
mations

1. Introduction. The problem we consider is the optimization of straight
line segments of computer code. The general approach is to find a set of trans-
formations which is complete, in the sense that any two equivalent programs can
be transformed into one another using transformations from this set. We then
characterize code optimization algorithms in terms of these transformations.

Our motivation for looking at straight line code is twofold. First, knowing
how to optimize straight line code seems to be a necessary prerequisite for optimiza-
tion of more general programs. Secondly, we wish to isolate problems inherent in
code optimization without encountering too many undecidability results. When
one considers anything more complex than straight line programs, the equivalence
problem for programs is likely to be undecidable. A good example of this pheno-
menon occurs in [1], [2] where a model of programs similar to ours, but having
loops, is considered.

Various practical approaches to code optimization have involved looking
at transformations which preserve program equivalence. Some of these works are
[3]-[8]. This group of papers considers programs with loops, and no attempt has
been made to find complete sets of transformations.

Various works on program schemata following Ianov [9] have shown equiva-
lence to be decidable for programs with loops. The seeming discrepancy between
these schemata and our previous comments can be explained by the fact that our
definition of when two programs are equivalent is considerably more liberal than
that of [9]-[13]. The latter works require that programs apply the same operations
in the same order, while we allow independent operations to be applied in any
order.

Igarishi has characterized equivalent straight line programs by a set of
transformations somewhat similar to ours [14]. However, two major differences
between our approach and Igarishi’s are:

(i) In [14], statements ofthe form A B are permitted, while we do not permit
these. These statements could be incorporated into our model, but they would
disappear in the simple graphical representation of programs which we use.
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(ii) We do not care how many variables have the same value at the end of a
program or what names are given to a variable. Only the set of values computed is
important. Our motivation is that ifa straight line block is part ofa larger program,
there is never a need for two or more copies of the same value to be passed from
block to block, provided we know for certain that the values will always be the
same. In contrast, the name of the variable holding a given value is important in
[14].

Thus, the models and notion ofequivalence in [14] are not quite the same, and a
direct derivation of our transformations from Igarishi’s "axioms" would be
difficult. Our model admits of a very simple characterization of equivalent pro-
grams as well as a simple graphical representation of programs. Both these
features are useful in discussing optimization algorithms.

Another work [15] has done an analysis quite similar to ours for a much
simpler model of a program, in which all statements are of the form A - B for
variables A and B.

A preliminary version of some of the material in this paper appears in [16],
and the latter paper also contains some consideration of how to extend these ideas
in a straightforward manner to the case in which algebraic laws are permitted to
transform expressions into algebraically equivalent expressions.

2. Basle coneelts. We begin by defining our model of a straight line program
together with other concepts we shall use.

2.1. Programs. Let (R) and Z be disjoint sets;(R), the operator alphabet, is
finite, and Z, the variable names, is a countable set. We assume that each operator
in (R) has an associated positive integer, its rank, which indicates the number of
arguments taken by that operator. A statement over (R) and Z (or statement when
(R) and Z are understood) is a string of the form A - OB1 B,, where 0 is in (R)

and has rank n, A, B1, "’", B, are in 2 and - is a metasymbol, presumed to be in
neither (R) nor 22. We say the statement A OB1... B, sets A and references
Ba,...,B

A program over (R) and 52 (or program, where (R) and 52 are understood) is a
triple z (P, I, U), where"

1. I and U are finite subsets of 52, the input and output variables, respectively.
2. P is a list of statements $1 $2 S,,, where m >= 0, and Si is a statement

over (R) and 52, for __< __< m.
3. If Si references a variable B, then either B is in I or B is set by some previous

Sj,j<i.
4. If B is in U, then either B is in I or B is set by some statement.
Thus, a program is a sequence of statements, with a known set of initially

defined variables (1) and a known set of output variables (U). Conditions 3 and 4
ensure that any variable appearing in the program will have a well-defined value.

Let z (P, I, U) be a program over (R) and 2, with P $1 $2 Sin" The
value of variable A at time according to z, denoted v’(A) (or v,(A), if c is under-
stood), is defined to be an expression over (R) U Z in prefix Polish notation. The
definition is as follows.

1. vo(A) A for all A in 1.
2. Let S, be A +-- OB1 B,, _> 1. Then vt(A Ovt_ l(B1)vt- 1(B2) vt- I(B,).
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3. Let S be A - OBa B,, and let C A. If v_ a(C) is defined, then v,(C)
v,_ (C).

4. v,(A) is undefined if not defined by (i)-(iii).
We observe that condition 3 in the definition ofprogram ensures that whenever

rule 2, above, is applied, v_ (B) will be defined, for 1 =< =< n.
The value of program (P, I, U), denoted v(rc), is {vm(A)IA is in U}, where

m is the number of statements in P. We say t is equivalent to 72 (written n n2)
if v(rc) v(rc2).

Example 2.1. We shall consider a program rc (P, I, U) over (R) and Z, where
(R) includes + and *, and E includes A, B, .., Z. Let P be the list of statements

F +-- +AX;

T*XX;

G - +FT;

T .TT;

G+--+GT,

and let I {A, X}, U {F, G}. Table 1 gives the values of each variable men-
tioned, where y + + + AX.XX**XX.XX. Thus v(rc) { + AX, y}. This
program represents the evaluation of the polynomials A + X and A + X + X2

+ X4.

TABLE

v,(A) v,(X v,(F) vt( T) v,(G)

0 A X
A X

2 A X
3 A X
4 A X
5 A X

+AX
+AX
+AX
+AX
+AX

*XX
*XX
**XX*XX
**XX*XX

+ +AX*XX
+ +AX*XX
Y

2.2. Directed acyclic graphs (DAGs). An ordered directed graph G is a pair
(N, R), where N is a set of nodes and R is a set of lists of nodes such that for each
a in N, there is at most one list of the form ((a, bl), (a, b2), ..., (a, b,)), where each
b is in N. This element would indicate that node a has n descendants, the first
being b l, the second b2 and so on. Node a is an ancestor of each bi. The pfiir
(a, hi) is called an edge directedfrom a to hi.

A path in graph G is a sequence of nodes n x, n2,’", nm, m > 1, such that ni
is a descendant of ni- 1, for all i, 1 < =< m. The length of the path is m 1. The
path is a cycle if n r/m- A leaf is a node with no descendants. A node which is not
a leaf is called an interior node. A node with no ancestors is called a root.

We call an ordered directed graph with no cycles a DAG (for directed,
acyclic graph). We shall display a DAG with descendants below their ancestor.
Also we assume that the edges immediately leaving a node are in order from left to
right, with the first edge leftmost.
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Figure 2.1 shows a DAG in which node A has three descendants, node B
being the first, C the second, and B again the third. Nodes A and D are roots and
nodes B, C, and D are leaves.

B C

FIG. 2.1. Example of a DAG

Let (R) and E be disjoint sets. A O-Y; labeling (or labeling) of a DAG assigns
to each leaf an element of2 and to each interior node an element of (R). In addition,
each node is either "distinguished" or "not distinguished," a notion whose meaning
will become clear shortly. When drawing a DAG, we shall put the labels directly
on the nodes and circle distinguished nodes.

Let D be a DAG with a (R)-Z labeling. We assign a value to the nodes of D
and to D itself, as follows. Let v(n), or v(n) where D is understood, denote the
value of node n; v(D) represents the value of D.

1. If n is a leaf with label A in Z, then v(n) A.
2. If n is an interior node with label 0 in (R), and its descendants have values

v l, v2, "", v,, in order from the left, then v(n) Ovlv2 Vm.
3. v(D) {v(n)ln is a distinguished node}.
To every program rt there corresponds naturally a labeled DAG, which we

denote D(rc). Given a program rc (P, I, U) we may construct D(rc) as follows.
1. For each element A of I, create a node na and label it A na will be a leaf of

D().
2. Let P $1 $2 Sin. We create an interior node of D() corresponding

to each statement of P. Suppose nodes n, n2, ..., ni have been created, corre-
sponding to S,S2,...,Si, respectively. (Initially, i=0.) Let Si+ be
A +-OBI... B,. Create node ni+ and label it 0. Node ni+ has r descendants,
x x, ..., x, defined as follows, in order from the left.

(a) Suppose for some k, 1 =< k =< r, that j is the largest integer less than
such that Sj sets Bk. Then xk is the node nj corresponding to Sj.

(b) If no such j exists, then B must be in I, and x is the leaf nBk.
3. For each element A of U, if j is the largest integer such that Sj sets A, then

nj is distinguished. If no such j exists, leaf nA is distinguished.
From the construction of D(z) we can show by induction on that v(ni)

v’[(A) if Si sets A. Consequently if ni is a distinguished node, and S sets A,
then v’(A)= v(A). Hence v(D(rc)) v(n). That is to say, the values of the dis-
tinguished nodes of D are the same as the values of the output variables of r
after the last statement of the program.
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Example 2.2. Let rc be as in Example 2.1. Then D(rc) is shown in Fig. 2.2.

FIG. 2.2. DAG for rc

2.3. The concept of scope. Let rc (P, L U) be a (R)-E program with P $1
$2;." ;Sin. Suppose statement Si is A OB1 Br. The scope of Si is the se-
quence of statements Si/ 1, Si/ 2, "’", Sj, where j is the largest integer such that
A is referenced by S but is not set by S+ 1, "’", Sj_ t. In addition if A is in U,
and none of Si+ 1,’", Sm set A, then the scope of Si is U and the statements
Si/ , ..., Sin. Otherwise, the scope of Si is null.

We can also associate a scope with input variables. The scope of A in I is the
sequence of statements St,"’, S j, where j is the largest integer such that S
references A and A is not set by S, ..., S_ 1. Also, if A is in U and is not set by
any statement in P, then the scope ofA in I is U and all statements. Otherwise, the
scope of A in I is null. We say that a variable is used if it is referenced by some
statement or is an output variable.

If a variable A is set by statement Si, we say A is active over the scope of S.
Likewise, if A is in I, then A is active over the scope of A in I.

In several situations we want to know what names can be used for a variable
defined by a statement of a program. We say a variable name A is permissible for S
if either"

(i) A is set by Si, or
(ii) the scope of Si is not null and A is not active within the scope of Si, or

(iii) the scope of Si is null and A is not active at S/ (or U if m).
Example 2.3. Let n be as in Example 2.1. Then the scope of the statement

T *XX is G + FT; T * TT, and the scope of G - + GT is U. T is active
over the statements G + FT; T * TT; G ,- + GT. F is active over the last 4
statements and U. No other name is active over the statement G + FT. Thus,
the set of permissible names for this statement is E {F, T). Roughly speaking,
a name is permissible for S if it can be substituted for the variable actually set by
S everywhere within the scope of S, without altering the value of the program.

2.4. Transformations on programs. Formally, a transformation T on (R)-Y

programs is a mapping from (R)-E programs to subsets of (R)-E programs.
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We would like to have a set S of transformations such that for any pair of
equivalent programs n and n2 there is a finite sequence of transformations from
S which maps n into hE. Strictly speaking there is one trivial transformation of this
nature, namely, T(n) {n’ln n’}. However, we would like to develop a theory
built on transformations that have more intuitive appeal and are easier to apply
from a computational point of view. The following four transformations are
"natural" ones to consider.

T1. Removal of useless statements and variables.
T2. Identification of two computations producing the same value.
T3. Renaming of variables.
T4. Flipping of adjacent statements.
These transformations are defined as follows.
Transformation T1. Let n (P,I, U), where P S1;... ;Sm, and let Sg

have null scope. Then n’= (P’,I, U) is in Tl(n), where P’= $1;... ;Si-;
Si+ Sin. Suppose A is in I and this A has null scope. Then n" (P, I {A},
U) is in Tl(n).

Thus, transformation T1 removes from a program a statement which sets a
variable that is never used or an input variable that is never used.

Transformation T1 is particularly simple to implement. Given a program
n (P, I, U), we can scan the sequence of statements P $1;$2; Sm back-
wards to determine Uk, the set ofactive variables at statement Sk. Initially, Um U.
Suppose Uk has been determined. If statement Sk-1 is A -OBI’" B, then"

(i) Uk- Uk if A is not in Uk. In this case Sk- is a useless statement.
(ii) Uk-1 (Uk {A}) U {B1,’", B,} ifA is in Uk. In this case Sk-1 is not

useless.
(iii) If A is in I but not in Uo, then A is a useless input variable.
Transformation T2. Let rc (P, 1, U), where P $1; Sin. Suppose that

for some < j, Sg is B - OA1 A,, Sis C .-- OA1 A, and none of A1, .", A
are set by Si,..., Sj_ 1. Then the program n’= (P’, I, U’) is in T2(n) where P’...... "S’ "S’ "S’-S1,’",Si-I,Dc-OAI""Ar,Si+I," j-l, j+l,"

Here, S,, < k __< m, is Sk with the following changes"
(i) If Sk is in the scope of S, then replace references to B by D.

(ii) If Sk is in the scope of S, then replace references to C by D.
Also, U’ is U with B replaced by D if U is in the scope of S and C replaced by

D if U is in the scope of S.
D may be any variable name such that v(n) v(n’).
Clearly, any variable not used in n is suitable as the variable D. We can also

use for D somevariables already present in n. However, a precise set of conditions
on the allowable names for D is complicated (although possible), and the actual
set of conditions is not needed for our development here.

In terms of the DAG for a program, transformation T2 merges two nodes
having the same label and the same descendants (in order). Thus, it is easy to
implement transformation T2 when the DAG for a program is available.

Transformation T3. Let n (P, I, U) with P $1 Sin. Let C be a permis-
sible name for Si A - OB1 B. Then ’ (P’, I, U’) is in T3() if:

(i) P’ is P with S replaced by C - OB1 B, and all references to A within
the scope of S replaced by C,
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(ii) U’ is either U {A} U {C} or U, as U is or is not in the scope of Si.

Transformation T4. Let rc (P, I, U) and P $1;... ;Sm. Let Si
A OB1. Br and Si+ C /D Ds. If A 4= C, A c- D for 1 <_j<__s,

and C - Bj for 1 __< j __< r, then r’ is in T4(r), where rr’ (P’, I, U) and P’ S
Si- Si + Si Si+ 2 Sm.

Note that transformations T3 and T4 have no effect on the DAG representing
a program.

Example 2.4. Let rt (P, {A, B}, {D, E}), where P is

C +AB;

D *CC;

E,- +AB;

F,- +ED.

The scope of statement F + ED is null, so we can apply T1 to 7r to obtain 7

(P1, {A, B}, {D, E}), where P is
C,-- +AB;

D ,-- *CC;

E,--+AB.

Applying T4 to the last two statements of 1 we can obtain 7r2 (P2, {A, B},
{D, E}), where P2 is

C +AB;

E +AB;

D *CC.

We can then apply T2 to rt to obtain rt3 (/’3, {A, B}, {D, X}), where P3 is

X +AB;

D*XX.

We could also have applied T2 directly to zc to obtain re3.
If re’ is in Ti(rc), for 1 =< =< 4, we say rc re’. If S is a subset of { 1, 2, 3, 4} we

define a relation - on programs by" rc , re’ if there exists a sequence of programs
rc, ..., rc, k >_ 1, such that rt re, rc re’ and for all i, 1 =< =< k, either rt

rc + or rc + r for some j in S. Thus, is the least equivalence relation con-s
taining for each in S. Note that the transformation implied by allowss
application of T1-T4 in either the direction stated or in the inverse direction.

We say a set S of transformations is complete if rc 2 if and only if rcl
go, rt2. S is minimal complete if S is complete, but no proper subset of S is complete.
s

3. Completeness and independence theorems. We shall show some basic
results about the four transformations we have defined. These can be stated briefly
as follows.

1. 1, 2} is the only minimal complete subset of 1, 2, 3, 4}.

" Tg2 if and only if rc and 2 have the same DAG.2. 7/71 3,4
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3.1. Preservation of equivalence by the transformations. In this section we
shall show that the four transformations preserve program equivalence, and that
the effect of transformations T3 and T4 can be obtained using only T1 and T2.

LEMMA 3.1. If n : n’, then n =- n’.
Proof. The proof is a straightforward consequence of the definitions and is

omitted.
T2 preserves equivalence of programs by definition, but it is important to

know that it is not vacuous. We state this as the next lemma.
LEMMA 3.2. Let n (P, I, U) and let D not appear in P or be a member of I.

Then n =_ n’, where n’ is constructed as in the definition of T2 with this value of D.
Proof Again, the proof is straightforward and is omitted.
LEMMA 3.3. If n = n’, then n ,2 n’.

Proof. Let n (P,I, U)where P S;... ;Sin, with Si A *-OBj... B.
Let n’=(P’,I,U’), with P’ S S_ C ,-- OB B S’ +1;
where S is S with references of A replaced by C if Si is in the scope of S. U’ is
U with A replaced by C if U is in the scope of S.

Let X be a variable name not appearing in n. Define n to be (P1, I, U),
where P S ;-.. Si- X ,-- OB B; A ,-- OB B; S+ ;... Sin. That
is, insert an extra copy of S before S. Since X does not appear elsewhere, X is a
useless variable in n, and we can state n n.

To show n . n’, it should be clear that C can play the role ofD in the definition
of T2, if S is taken to be X ,--OB B and S to be A ,-OB B in that
definition.

We have shown nl n and nl " n’. Thus, we may conclude n , n’. Note
that a use of T1 "backwards" is essential to this argument.

LEMMA 3.4. If n : n, then n

Proof. Let n (P, I, U) where P $1; S, with Si A
Si/I C -D1... Ds, A v C, A :/: Dk, l <= k <= s, and C v Bk,
Let n’ (P’,I, U), where P’ $1; Si-1; Si/l Si; Si/:; ;Sin. That is,
P’ is P with Si and Si / interchanged.

Consider nl-(PI,I,U), where P1 is $1;.’. S/_1; XD1...Ds;
A OB1 Br; C -/D1 D; ;Sin, and X is a new variable name. In
P1,X -/D1 D is useless, so nl n. We can then show that nl n’ by
showing that C can play the role of D in the definition of T2, with S
X OD1 D and Si C lD D
Putting the previous two lemmas together, we have the following results., n’, then n : n’THEOREM 3 1. If n 1,2,3,4 1,2

Proof The proof is immediate from Lemmas 3.3 and 3.4.
n’, then n =- n’.THEOREM 3.2. If n 1,2,3,4.

Proof. The proof is immediate from Lemmas 3.1, 3.3 and 3.4.

3.2. Characterization of DAGs. We shall now show that n , n’ if and only
3,4-

if D(n) D(n’). Thus, the DAGs are the natural representatives for the equiva-
lence classes under

3,4."

LEMMA 3.5. If (a) n 7’ or (b) 7 : 7’, then O(n) D(n’).
Proof. Again these results are direct applications of definitions, and we shall

prove only part (b). Let n (P, I, U) and n’ (P’, I, U), where P $1;
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and P’= S1; Si_ 1; Si+ 1; Si; Si+ 2;"" ;Sin" Let S A OBI"" B,. and
Si/ C - ,D1 D. Certainly the leaves of D(rc) and D(n’) are the same, and
the nodes corresponding to $1,’.’, Si-1 in each have the same labels and the
same descendants. We claim that the nodes corresponding to Si in D(n) and D(rc’)
are the same. They certainly have the same labels. Let the descendants of this node
in D(n) be n l, ..., nr, where nj corresponds to the statement most recently setting
Bj. Since C is not among B1,..., Br, the node in D(rc’) also has descendants
tll, /7

Similarly, the nodes corresponding to Si+ in D(Tr) and D(r’) have the same
descendants. Since A # C, after + nodes of the two DAGs have been con-
structed, the nodes corresponding to the last definitions of each variable are the
same.

It is straightforward that the distinguished nodes of the two DAGs are the
same. Thus, D(rc) D(rc’).

THEOREM 3.3. O(rc) O(rt’)/f and only if rc re’.
Proof. Lemma 3.5 is the "if" portion, so we need prove only the converse.

Suppose D(z)= D(rc’)= D, where rc (P,I, U) and re’= (P’,I, U’). Since the
DAGs are the same, we note that rt and re’ have the same input sets, and that P
and P’ have the same length. Let P $1; $2; S, and P’ T1 %.; T.
We shall construct a sequence of programs rio, rtl,-.., ft, such that rto

,dn 7, 7 ":> i for all 0 < < n, an if ri (Pi, I, Ui), then the first state-
{3,4} +

ments of Pi are TI" T2"... 7 Thus, n . n’ will follow directly.
{3,4}

Suppose we have 7 for some _>_ 0. By Lemma 3.5, D(z) D. Let Pg R1
R, where R T, 1 _<_ j __< i. Let r/be the node in D corresponding to T//

in P’ and Rk the statement in P which corresponds to r/. Certainly k > i, else the
node r/corresponds to two statements of P’. Suppose Rk A OB Bm.

Since r/corresponds to both Rk and T/ 1, each of the B’s must either be in !
or set by one of T1,..., T (- R1,..., R). That is, the descendants of r/ are
each nodes corresponding to T1, ..., T/and the input variables. We can say more
about the B’s. They must not be set by any of Ri/ 1, "’", Rk- 1, else the node cor-
responding to Rk in D(zg) would have a descendant which could not be a descendant
of r/. Finally, we conclude that T/+ is C +--OB1... B for some C, since the
descendants of r/correspond to statements in both Pi and P’ which set these vari-
ables.

We now construct rci+ as follows.
1. Let X be a new variable not appearing in rt. By T3, replace Rk by

X -- OB Bm. (Modification of Rk+ , "’", R, and U may take place.)
2. Repeatedly using T4, bring the statement X OB1 Bm to the position

immediately following Rj. This is possible since none of Ri+l,’", Rk-1 set
any of X, B1, "’", Bm or reference X.

3. Then, using T3, cause all statements setting C in the statements now
following X OB1 Bm to set some new variable Y.

4. Finally using T3, replace X .--OB1... B,, by C -OB1...B,,,. This is
possible because the scope of any statement among T1, ..’, T/which sets C does
not extend past T+ in P’.

The four steps above convert ri into some program rci+l whose first +
statements are T1, ..., T/+ 1. The proof is now complete.
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3.3 Reduced programs and DAGs. A program g is said to be reduced if
there is no program g’ such that g , ’. Intuitively, a reduced program is one
which has no redundancy and no useless variables. A DAG D is reduced if D

D(g) for some reduced program g.

LEMMA 3.6. If E is an expression over (R) Y in prefix Polish notation, then
either E is a single variable or E can be uniquely expressed as OEx Em, where
0 is an m-ary operator and each El, ..., Em forms a prefix expression.

Proof. This lemma is well known. Since we know how many arguments an
operator takes, a method based on counting the number of operators and argu-
ments when scanning the expression E can be used to obtain a unique "parse" of E.
The details will be omitted.

LEMMA 3.7. Let (P,I, U) be a reduced program with P Sx;"" S,.
Suppose statement S sets Ak, 1 <= k <__ n. Then for all and j, 1 < j < n,
v(A3 v().

Proof. We shall show that if vi(Ai): vj(Aj) for some and j, = j, then g

cannot be reduced.
Suppose two statements in P define the same value. Then choose that pair

of integers and j such that if (i’,j’) is any other pair of integers violating the stated
condition, then < i’ or i’ and j < j’. Suppose Si is Ai - OCx Cm and Sj
is Aj .- ODx Dm" (Clearly, the operators must be the same if the expressions
are the same.)

We must have Ck Dk, 1 =< k __< m. Otherwise, suppose for’some k, Ck = Dk.
Then by Lcmma 3.6, vi_ x(Ck) vj_ x(Dk). Let i’ and j’ be the largest integers less
than and j, respectively, such that A, Ck and Aj, Dk. (The case in which one
or both of Ck and Dk were not previously set can be easily ruled out.) Then i’
4 j’, v,(Ck) vj,(Dk), and we contradict our assumption on (i,j). Thus, Ck Dk
for 1 <k <m.

It is easy to show that none of C1, "", Cm is set by Si, "", S_x. For if the
first such instance is Ck set by S, __< < j, then v_ (Ck) v(Ck), else vi(Ai)
:/: v(A). Thus, the same value was defined at S and the previous time Ck was set.
(Again, there must be such a time.) This previous time was before S, so we again
have a contradiction to our choice of i.

We may thus apply T2 to n, replacing Sg and S by X - OCx Cm, where X
is a new variable. Hence, n is not reduced.

THEOREM 3.4. Let n and 7(, 2 be reduced programs. Then n 7r, 2 if and only if
D(I)-- D(z).

Proof. The if" portion is trivial. Let z (P1,11, Ux) and z (Pz, lz, Uz),
with z z. We shall show that D() D(z). It is elementary to argue that
Ix 12, else, since gl and 2 are reduced, the value of one program involves a
variable name not appearing in the value of the other program.

Let Px =Sx;S2;"" ;Sk and P2 Tx;T2;... ;T. Let f, l__<i__<k, be
the value at time of the variable defined by Si, and let gi, 1 __< =< l, be the value
at time of the variable defined by T/. Then we claim that for all i, 1 < =< k,
there exists j such that gj f, and for all i, 1 __< __< l, there exists j such that
f---g. We can prove the first contention by choosing to be as large as
possible such that f : gj, 1 __< j =< l. Certainly, f is not in v(x). Thus, since gx is
reduced, there exists fro, m > i, such that f/is a subexpression of fro. By choice of
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i, fm g, for some n. By Lemma 3.6, there exists gp, p < n, such that gp f/,
contrary to hypothesis.

By the above paragraph and Lemma 3.6, the set {f1,"" ,fk) is equal to
{gl, "’", g/}, f - fj for :/: j, g :/: gj for - j, and k I. Thus, by Lemma 3.7,
we can uniquely pair the interior nodes of D(rl) and D(rc2) in such a way that the
node of D(rCl) corresponding to some statement St is paired with the node of D(rc2)
corresponding to T with f gj. By Lemma 3.6, the descendants of paired nodes
are also paired, in the correct order. Hence, this pairing is in fact a graph isomor-
phism showing that D(rCl) and D(z2) are the same.

COROLLARY 3.1. All reduced programs equivalent to a given program have the
same DAG.

COROLLARY 3.2. If a DAG D is reduced, then every program rc such that D
D(n) is reduced.
Proof. Since D is reduced, D D(rCl) for some reduced rl. If r were not

reduced, let r’ be a reduced program equivalent to r. By Theorems 3.2 and 3.3,
rc re l, so r’ rCl. By Theorem 3.4, D(rI)= D(rc’)= D.

However, we can assume that re’ has fewer sta,tem,ents than re, since a reduced
program can be obtained from r by applying T1 and T2 in their forward directions
as often as possible. By hypothesis, this is possible at least once. Thus, D(r’) has
fewer nodes than D(rc) D and D(r’) -: D. But we have already shown D(r’) D,
and so must conclude that t was reduced.

3.4. Characterization of equivalent programs. We can now prove the central
result, that two programs are equivalent if and only if they can be transformed into
each other using only T1 and T2.

2"THEOREM 3.5. Let rc and rtz be programs. Then rc re2 ifand only ifrc 1,2

Proof The "if" portion is Lemma 3.1. For the "only if" portion, let t’ and
rc’l and r2

, Such programs exist,72 be reduced programs such that n
1,2 1,2 re2"

as we can apply T1 and T2 to any program only a finite number of times since the
length of the program decreases with each application. By Lemma 3.1, n’ -= n
and n n2, so n’l ---n. By Theorem 3.4, O(n’)= D(n’2). By Theorem 3.3,
7’ 3,4 7"g2’ Thus, by Theorem 3.1, Tg "1,2 To2"

We have thus provided a method of generating, in a systematic way, all
programs equivalent to a given one. We are actually interested not in all equivalent
programs, but in an optimal equivalent one, so we shall restrict the sequence of
application of transformations further in 4. There we shall show that under
reasonable conditions the sequence of applications of transformations to go from
an arbitrary program to an equivalent optimal one is of bounded length and can
be made to have a special form.

3.5. Incomplete subsets of the transformations. As an essentially incidental
result, we show that no subset of {T1, T2, T3, T4} which does not contain T1
and T2 is complete, and, consequently, that T1 and T2 form a minimal complete
set of transformations. The following two theorems together embody these
statements.

,&> rc2THEOREM 3.6. There exist equivalent programs rc and rc 2 such that r
2,3,4

is false.
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Proof. Let gl (P1, {A,B}, {C}) and n2 (P2, {A,B}, {C}), where P,
C ,- + AB and P2 C *AB; C - + AB.
Then, certainly, v(nl)= v(=2)= {+AB}. Transformations T3 and T4

preserve the number of statements that have a particular operator, *, in this case.
Transformation T2 applied in the forward direction does not increase the number
of statements with operator *, and in the backward direction increases that
number only if the number is not zero to begin with. A formal proof that no
sequence of T2, T3 and T4 can transform n into z should now be evident.

THEO,M 3.7 There exist equivalent programs and n2 such that 1 1,3,4 2

is .false.
Proof. Let n (P1, {A,B}, {C,D}) and n2 (Pz, {A,B}, {C,D}), where

P1 and P2 are given by"

T - +AB; C - +AB;

D +-- *TT; D *CC.

C- +AB;

We shall outline an intuitive argument as to why n cannot be transformed
into 7t7 2 by any sequence of T1, T3 and T4.

Consider any program n obtained from n by a sequence of T1, T3 and T4.
We must be able to find in the statement of a sequence of statements of the
form X +AB W ,-- ,XX, such that:

(i) W is an output variable, and X is not set between X +-- +AB and W
*-- *XX.

(ii) There must be a statement Y +- + AB, where Y is an output variable, in
this sequence.

(iii) If the statement Y +- + AB appears between X - +AB and W - *XX,
inclusive, then X -# Y.

A formal proof of these assertions is a straightforward induction on the
number of transformations applied to go from nl to n. Since every has at least
three statements, c2 cannot be ft.

COROLLARY 3.3. {T1, T2} is minimal complete.

4. Optimization algorithms. We shall now provide a method for finding an
optimal program equivalent to a given one, where "optimal" is defined with
respect to any of a wide variety of cost criteria. This method isolates the easy and
hard parts of straight line code optimization. Since optimality is defined in terms
of a broad class of cost functions, we can only provide universal exhaustive
algorithms for the hard parts. For the specific cost function at hand the user should
find more efficient algorithms or heuristics for these aspects of the optimization.

DEFINITION. A cost criterion C is a function which maps programs to real
numbers (the cost). We say cost criterion C is reasonable if C(n’) <= C(n), whenever
n n’. That is, a cost criterion is reasonable if an application of T1 and T2 in

1,2

their forward directions does not increase the cost of a program. A program n is
optimal under cost C if C(n) <= C(n’) for any n’ n.
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Under the definition of reasonable cost criterion every program which has
an equivalent optimal program2 has an optimal program that is reduced. Thus,
given a program re, we can confine our search for an optimal program for t to
the class of reduced programs equivalent to re.

DEFINITION. A program is open if no two statements set the same variable,
and no input variable is ever set.

LEMMA 4.1. Let tl be an open program and suppose tl 3 r2 =Z 3. Then

tl = re’2 3 t3 for some open program t’2.
Proof. Let the statements of r2 be P2 $1 Si; Si+ S, and those

of re3 be P3, where P3 is P2 with statements Si and S+1 interchanged. Let the
statements of rCl be P1 S’ S’,, where P2 is obtained from P1 by applications
of T3. Let Si be A - OB1 Bm and Si+l be C OD1 Dr. Then A :/: C,
A - D and C B. Let S’ be A’ OB’... B’m and S’+ be C’ OD’

be rcl with P1Define P S], S’_ 1, S’i+ 1, S’, S’i+ 2, S’,, and let re2
replaced by P.

We claim that rc - ritz. Clearly, rcz is an open program, A’ :/: C’ and none

of B’, ..., B;, can be C’. If A’ is one of D], ..., D;, then,A will be one ofD, ...,
Dr, no matter where the renaming in the sequence ra - re2 occurred. Thus, the
conditions for an application of T4 are fulfilled.

It is elementary, given these inequalities, to show that rcz ., re3 by renaming
the same variables in the same way as was done in the transformation rc <- re2.
The details are omitted.

LEMMA 4.2. Let rcl be an open program and suppose rcl 3,<= re3. Then there is an
open program rc2 such that 7rl re2 3 rc3"

Proof We observe that T3 and T4 are invertible, that is, rc re’ if and only if
3,4

7r. Thus we can find a sequence c 70) c(1) 7c(r) g3. Let k of
3,4 3,4 3,4 3,4

these r steps be by T4. We show by induction on k that we can find re2 such that

rc . re2 <, re3. The basis, k 0 is trivial.

Assume the hypothesis is true for k 1, where k > 0. Without loss of gener-
ality, we can find j _>_ 0 such that rc). rcCJ) . rc/J+ 1) rc(r). By Lemma 4.1, there

exists an open re4 such that rc() =2" re4 . rc(J+ 1). By the inductive hypothesis, there is

some rc2 such that re4 rc2 <g rc 3 Thus, rc rc 2
, rc

4 3 4 3 3"

We shall now give a characterization of optimization procedures under
reasonable cost criteria.

It would seem that "reasonable" in the formal sense would include all cost criteria which were
"reasonable" in the intuitive sense. However, M. D. McIlroy has pointed out a situation where this
is not so. Suppose we are generating code for a computer with three very fast accumulators, and our
program requires constant use of the values A, B and A + B. It might be advantageous to use two
accumulators to store A and B, and compute A + B whenever it was needed. Eliminating redundant
computations of A + B could actually increase the cost. Nevertheless, we feel "reasonable" is still
a pretty reasonable assumption.

In bizarre cases a program need not have an equivalent optimal program. For example, consider
the "reasonable" cost criterion where the cost of a program is 1/n where n is the length of the longest
variable name appearing in a useful, irredundant statement of the program. Given a program n, no
optimal program for n exists.
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THEOREM 4.1. Let be any program. Then there exists a program 2 equivalent
to zt such that for any reasonable cost criterion C such that ztl has an equivalent
optimal program under C, there exist programs zt 3 and re4 where:

(i) roe + 73

(ii) 7"C + 4, and

(iii) z is optimal under C.
Proof. Let rc’ be a reduced program equivalent to z 1. Using T3, we can trans-

form t’ into te, an open program equivalent to z and z’. By Theorem 3.3,
D(rt2) D(z). By Corollary 3.2, re2 is reduced.

If an optimal program for cl exists, we know we can find a reduced optimal
program rc equivalent to rl. Thus, by Theorem 3.4, D(z) D(rr2). By Theorem
3.3, z2 t. By Lemma 4.2, there exists z3 such that re , z3 z,.

Intuitively, what is implied by Theorem 4.1 is that if an optimal program
exists under any reasonable cost criterion, we can find one by first removing use-
less and redundant statements, then applying some techniques to reorder the
statements and, if necessary, rename variables. The first task, removing useless and
redundant statements can be quickly done in a straightforward manner. 3

Often, the names of the variables are unimportant, so only statement order
counts. An example occurs when cost is the speed of the resulting program. At
other times, only the names are important, for example if cost is the number of
different locations needed for temporary storage. In these cases, part of the difficulty
of optimizing disappears; that is, we can go from roe to an optimal program using
only T3 or only T4.

In any case, the problem of considering all programs accessible from another
using only T3 or T4 is a finite but large combinatorial problem. It is the force of
Theorem 4.1 that one can restrict oneself to finding efficient algorithms (or heuris-
tics) to search for good choices for z3 or z. That this is the case is probably
intuitively obvious. However, it is comforting to know that our intuition can be
backed up by formal analysis in this case.

Example 4.1. We shall postulate a computer with a single accumulator. The
operations which the machine can do are the following:

1. LOAD a memory address into the accumulator.
2. STORE the accumulator into a memory address.
3. If 0 is an n-arT operator, it may apply operation 0 with the first argument

found in the accumulator and the remaining n arguments found in designated
memory addresses.

The statement A ,--OB1 B, can be executed on such a machine by the
following sequence of instructions:

(a) If the value of B1 is not already in the accumulator, LOAD B1. If already
there, do nothing.

Elgot has pointed out that the process can be likened exactly to the process of reducing a finite
automaton. The DAG can be thought of as a transition diagram, with each node a state, transitions
moving down the DAG, and the distinguished nodes as initial states. Removal of useless statements
thus becomes removal of a state which is inaccessible from any initial state; removal of redundancy is
merger of equivalent states.
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(b) Apply operation 0 to the accumulator and the locations of B2, ..., B,.
(c) If necessary, STORE the accumulator.
The cost of executing the statement A OB1 B,, can thus be 1, 2 or 3. It is

3 if B is not found in the accumulator, and there is a subsequent reference to this
computation of A that is not the first argument of the next statement (i.e., A has
to be stored). It is 1 if B is found in the accumulator and there is no reference to
this computation of A other than as the first argument of the next statement.
The cost is 2 if one, but not both of the above conditions hold.

Let us consi4er the following program, which might be obtained from the
FORTRAN statements

( + ), (- ),

( ), ( c), ( c).

The resulting program is 1 (P, {A, B, C}, {F, }), where P is

T - +AB;

S -AB;

F *TS;

T -AB;

S- -AC;

R -BC;

T - *TS;

G -*TR.

We note one instance of redundancy, between the second and fourth state-
ments. We can eliminate this redundancy and then make the program open. The
output variables become X3 and X7. Call the resulting program

X +AB;

X2 - -AB;

X3 -- ,XlX2X -AC;

X - -BC;

X6 *X2X4

X7
,- ,X6X

The DAG for the above program is shown in Fig. 4.1. Node ni is created from
the statement which sets

While the problem of this example is simple enough to enumerate all possible
orderings of t2, we cannot afford the time to do this for an arbitrary program.
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/’/7

//2 /24- ---//

C

FIG. 4.1. DAGfor example program

Some heuristic that will produce good, although not necessarily optimal, orderings
quickly is needed. We propose one here. This algorithm produces an ordering of
the nodes of a DAG. The desired program has statements corresponding to these
nodes in reverse order. We express the algorithm as follows.

1. We construct a list L. Initially L is empty.
2. Choose a node n of the DAG such that n is not on L, and all n’s ancestors

are on L. Add n to L. If no such n exists, halt.
3. If nl is the last node added to L, the left-most descendant of nl is an interior

node n not on L, and all n’s ancestors are on L, add n to L and repeat step 3. Other-
wise go to step 2.

For example, using the DAG of Fig. 4.1, we might begin with L n3. By
step 3, we would add n to L. Then we could choose r/7, add it to Land follow it by
r/6 and /2" Two uses of rule 2 would add n4 and ns, so L is n3, n, nv, n6, /2, /4, ///5"
Recalling that the statement defining Xi creates node ni, and that the list L cor-
responds to the statements in reverse, we obtain the following program: r3 (P’,
{A, B, C}, {X3, Xv}), where P’ is

X5 .-- -BC;

X -AC;

X2 <-- -AB;

X6 <. ,X2X4;

X7 +--- ,X6X5

X -- +AB;

X3 +- ,XIX2.

It is easy to check that 2 + T3" No application of T3 changes the cost.
The assembly language programs obtained from 72 and rr3 are shown in

Fig. 4.2.
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LOAD A LOAD B
ADD B SUBTR C
STORE X STORE X
LOAD A LOAD A
SUBTR B SUBTR C
STORE X: STORE X,
LOAD X1 LOAD A
MULT X SUBTR B
STORE X STORE X
LOAD A MULT X,
SUBTR C MULT X5
STORE X,,. STORE X
LOAD B LOAD A
SUBTR C ADD B
STORE X MULT
LOAD X, STORE X:
MULT X,
MULT X
STORE X

(a) From n2 (b) From g3

FIG. 4.2. Assembly language programs

It is easy, incidentally, to show that 7c 3 is optimal under our cost criterion.
The following reasoning suffices.

1. Any program whose DAG in Fig. 4.1 has at least four LOADs, because
each of n l, n2,n,, and n5 requires its left operand be in the accumulator im-
mediately before the value of the node is computed.

2. Every interior node which is either distinguished or other than the left-
most descendant of some node must be stored. Thus, in Fig. 4.1, r/3, /77, /72, /74
and ns, a total of five nodes must be STOREd.

3. There are seven interior nodes in Fig. 4.1; hence at least seven machine
arithmetic instructions occur.

4. The assembly program of Fig. 4.2(b) meets each of these bounds exactly.
Of course, these simple bounds may not be attainable for an arbitrary DAG,

and optimization under this cost criterion is a large combinatorial problem.

5. Summary. We have given a set of transformations capable of transforming
a straight line program into any other equivalent one. These are:

T1. Removal (or insertion) of useless statements,
T2. Removal (or insertion) of redundant statements,
T3. Renaming of variables,
T4. Flipping of independent statements.
T1 and T2 alone are sufficient to characterize equivalent programs, although

no set not containing these is sufficient.
We showed that programs can be represented graphically by directed acyclic

graphs (DAGs), and that two programs have the same DAG if and only if they can
be transformed into one another by T3 and T4.

The concept of a reasonable cost criterion, one that does not increase when
T1 and T2 are applied to remove statements, was introduced. An optimization
procedure under any reasonable criterion can be expressed in three steps, the
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first of which is independent of the cost criterion. Of the second and third, one or
the other will often be unnecessary.

1. Remove redundant and useless statements by T1 and T2; then rename
variables by T3 until no variable is set more than once or is set and is also an
input variable.

2. Reorder statements by T4.
3. Rename variables by T3.
For a given program, all equivalent programs optimal under any reasonable

cost criterion have the same DAG.

6. Concluding remarks. There are several directions for further work. One
area is to focus on specific cost criteria in order to provide efficient algorithms for
the reordering of computations and renaming of variables. One example of this
occurs in [17], where an algorithm for generating optimal machine code for
certain arithmetic expressions is presented. This algorithm provides an efficient
method for choosing the order of the computations in an arithmetic expression
minimizing both the length of the output code and the number oftemporary stores
required.

We can also consider optimization knowing that certain algebraic identities
such as the associative or commutative laws hold among certain operators and
operands. These algebraic identities may often expose new common subexpressions
which would not arise using the four transformations considered here.

Unfortunately, it is well known that under some sets of algebraic identities it is
recursively undecidable to determine whether two programs are equivalent,
even for the rudimentary model of programs we are considering here. However,
it is possible to extend Theorem 4.1 to apply to optimization problems in the
presence of certain types of operator and operand preserving algebraic identities
[163.

Finally, the basic model should be extended to encompass larger classes of
programs. Along these lines the authors have considered the equivalence of
programs when structured variables such as array variables are added [18].
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TERMINAL CONTEXT IN
CONTEXT-SENSITIVE GRAMMARS*

RONALD V. BOOK"

Abstract. If every non-context-free rewriting rule of a context-sensitive (with erasing) grammar has
as left context a string of terminal symbols and the left context is at least as long as the right context,
then the language generated is context-free. If every non-context-free rewriting rule of a context-
sensitive (with erasing) grammar has as left and right context strings of terminal symbols, then the
language generated is context-free.

Key words, context-sensitive grammar, context-free language, terminal context, "messages,"
"barriers"

Introduction. It is well known that there exist context-sensitive grammars
which generate languages which are not context-free and that it is undecidable
whether a context-sensitive grammar generates a context-free language. However,
the mechanism by which the use of context allows a non-context-free language
to be generated is not well understood (in fact, the question itself is vague: what
does context do for you?). In this paper it is shown that if certain nontrivial
constraints are placed on the form of the rules of a context-sensitive (with erasing)
grammar, then only a context-free language will be generated. These constraints
involve the use of terminal strings as part of context. The first restriction (Theorem
1) is that for every non-context-free rule, the left context is a string of terminal
symbols which is at least as long as the (arbitrary) right context. (It is shown that
the length restriction cannot be dropped.) The second restriction (Theorem 2)
is that both left and right context be strings of terminal symbols.

If one is constructing a context-sensitive grammar to generate some non-
context-free language, then one often proceeds as if context can be used to "store
and transmit" information. Thus one builds rules so that "messages" or "pulses"
are transmitted along a string in the course of the derivation. Sometimes this effect
is achieved by building a grammar which imitates the action of a Turing machine
hence, the action of the read-write head must be imitated as it travels back and
forth across the tape. Notions of "connectivity" in derivations and in grammars
reflect this action, and restrictions on context sometimes alter the structure of
derivations (see [2], [7], [8]).

The "ability to send messages" has not been formalized in such a way as to
explain "what context does for you." However, this notion does provide an in-
tuitive "handle" for studying some questions and for gaining perspective on some
results concerning context-sensitive (with or without erasing) grammars and
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languages. Let us consider two examples"
(i) Ginsburg and Greibach 5] have shown that if G (V,Z,R,X) is a

grammar such that every rule in R is of the form p 0, where p (V- E)* and
0 V*E V*, then L(G) is context-free. Thus the left-hand side of a rule cannot con-
tain any terminal symbol and at each step of a derivation at least one new terminal
symbol is generated. In this way a "barrier" is erected at each step and no message
can cross the barrier since the left-hand side of a rule contains only nonterminal
symbols. Thus messages can be transmitted only a bounded distance.

(ii) Hibbard [9] has shown that if G (V, E, R, X) is a grammar and < is
a partial order on V with the property that for every rule Z1 ...Zp Y1 Y
in R, there exists Y {Y1,’", Y} such that for every Z {Z1,..., Zp}, Z < Y,
then L(G) is context-free. Thus no message can cross a maximal symbol so that a
maximal symbol serves as a barrier when generated. The condition on the rules and
the finiteness of V restrict the number of applications of rules in a given region
since a maximal symbol must be generated after a bounded number of steps in a
derivation. Thus messages can be transmitted only a bounded distance and only a
bounded number of messages can be transmitted past any given symbol.

The results established in this paper may be interpreted as constraining the
"message-sending" capacity by means of strings of terminal symbols which
act as barriers when used as context. In the case of Theorem 1, this allows one to
show that all terminal strings generated can be obtained from derivations which are
left-to-right with bounded "lookahead." In the case of Theorem 2, this allows a
series of reductions which eliminate all context. Thus both results are obtained
from first principles. Also, neither result appears to imply or be implied by the two
results cited above.

1. It is assumed that the reader is familiar with the basic facts of context-free
grammars and languages, regular sets, and gsm mappings (see [4]). However,
there are certain conventions which need to be emphasized here.

A grammar is a quadruple G (V, Z, R, X), where V is a finite set of symbols,
Z c V is the set of terminal symbols, X V -Z, and R is a finite set of rewriting
rules (productions) of the form 1Yl ,Y,,+ lw ,w,,+ with each
i Z*, yi (V E)*(V E), wi V*, and for some i, w 4:y.2 If p 0 R, then
for any ,/3 V*, write p// 0fl and say that the rule p 0 is applicable to the
string p/3 and that p 0 transforms p. A derivation in G is a sequence Fo,
F1,..., F, V* such that for i= 1,..., n, F_I F. The transitive reflexive
closure of is =. The language generated by G is L(G) {w Z*IX w}.

If G (V, E, R, X) is a grammar and Fo F1 F, is a derivation in
G, then a production sequence [7] for this derivation is a sequence of n ordered pairs,
{((Bi, Pi, Ci), (Bi, Qi, Ci))}’= 1, where for each 1,..., n, BiPiCi Fi-1, B,QiCi

Fi, and Pi Qi R.

There are two other approaches to these problems. In [3], 10]-[ 12] it is shown that for an arbitrary
grammar certain types ofderivations yield only context-free languages. Also, one can consider "regulat-
ing" the application of rewriting rules, such as in matrix grammars, programmed grammars, etc.
See [1], [6], [13], [14], El5].

For any set T of symbols, T* is the free semigroup with identity e generated by T.
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A grammar G (V, E, R, X) is type 0 (or context-sensitive with erasing,) if
each rule in R is of the form Z/? ,/, , , e V*, Z e V Z, where is the left
context and/ is the right context. When the rule Z/ / is applied to a string
ylOZfly2 to yield ylo/fly2, Z is the transformed symbol of ylzZfly2 = yz/fly2.

It is well known that a set L is recursively enumerable if and only if there is a type
O grammar G such that L(G) L.

A grammar G (V, E, R, X) is context-free if each rule in R is of the form
Z --. 7, Z e V E, 7 e V*. (In any grammar a rule of this form is called a context-
free rule.) A language L is context-free if and only if there is a context-free grammar
G such that L(G) L.

The length of a string w is denoted by [w[.
2. In this section we establish Theorem 1 below and show that the hypothesis

cannot be weakened.
TI-IFORM 1. Let G (V, E, R, X) be a type 0 grammar. If each non-context-free

rule in R is of the form zZfl Tfl where e E*, Z e V Z,, fl, 7 e V*, and [[ >= [fl[,
then L(G) is context-free.

A non-context-free rule in R has left context which is a terminal string and
right context which is no longer than the left (no other restriction is placed on the
right context). We shall show that these two restrictions imply that a "message"
cannot be "transmitted" to the left over a string of symbols longer than
+ m(m + 1)/2, where m max{[[ [Zfl 7fl e R}. Thus any we L(G) can be
generated by a derivation such that at each step the transformed symbol is no
farther than m(m + 1)/2 from the leftmost nonterminal symbol in the string being
transformed--hence, L(G) is context-free. In order to prove this, we first state some
definitions and review some facts about grammars and languages.

Let G (V, Z, R, X) be a type O grammar. For F, e V*, => 1, if F ,
where F aZ... Yfl, Z is the left-most nonterminal symbol in F (i.e., a e 2;*

and Z e V Z), Y is the transformed symbol in F , and [Z Y[ =< t, then
F W is bounded. If F is bounded, then it is r bounded for every r >= t.
A derivation is a bounded derivation if each step is bounded. For any >__ 1,
LEFT(t, G)= {weE*[ there is a t-bounded derivation X w in G}.
Clearly, for every __> 1, LEFT(t, G) c_ L(G). In [3], [10] it is shown that for any
grammar G and any >__ 1, LEFT(t, G) is a context-free language.

Notation. For any >_ 1, let M(t)= t(t + 1)/2. For a type O grammar
G (V, E, R, X), let m max{][ ]Zfl 7fl e R} and let MG + m(m).

If G satisfies the hypothesis of Theorem 1, then for any rule aZfl evil e R,
[ill =< M([fl[) < MG since [[ __> [fl[. To prove Theorem 1 we shall show that
LEFT(Ma, G)= L(G) so that L(G) is context-free because LEFT(Ma, G) is
context-free.

The formal argument proving Theorem is based on the following observa-
tions"

(i) Consider #aZx x,, where #, e E*. Suppose one wishes to apply the
rule aZfl evil in order to transform Z. Consider x x,. If fl is a prefix of

Xl x,, then this rule can be applied. If not, then other rules must be applied to

x x, in order to obtain a string with fl as prefix.
(ii) Suppose that fl x xq6, for some 6 4: e, where q < n, and that some

rule must be applied to Xl x, in order to transform xq+ so that eventually fl
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is obtained as a prefix. Further, suppose that the rule to be applied is a context-
sensitive rule, so that its left context is a suffix of x xq (since Z V- Z,
Z cannot occur as part of terminal left context). Then the rule to be applied must
have left context which is shorter than q + 1 =< I/1, But I1 >_-I/1 so that the left
context of this rule is shorter than .

(iii) By induction on I/1, it is seen that if it is possible to apply rules to
in order to obtain a string with/3 as prefix, then it is possible to do this by trans-
forming symbols,that are no farther than 1 + 2 + + I1 from z, so that each
step in the resulting derivation is M(10l) + 1 bounded. Since MG _>-- 1 /
the resulting derivation is MG bounded.3

The result of these observations is argued formally through two lemmas (the
proofofLemma 1 containing the main argument). The theorem then follows easily.

LEMMA 1. Let G (V, E, R, X) be a type 0 grammar which satisfies the hypo-
thesis of Theorem 1. For any V* and any n >= 1, if Fo =,, =:, F, is a derivation

of length n in G such that is not a prefix of Fo but is a prefix of F,, then there exist
FIo, ..., I-l, V* such that I-Io Fo, 1-I, F,, FIo =:, =:, 1-I, is a derivation of
length n in G, and the step FIo 1-I is M(I/31) bounded.

Proof. Since//is not a prefix of Fo,/ : e. The proof proceeds by induction
on I/1.

(i) For any n => 1, let Fo =:" F, be a derivation of length n in G, let
{((Bi, Pi, Ci), (Bi, Qi, Ci))}7= be a production sequence for this derivation, and
let Fo Y1 Y, >= 1, each Y e V. If I/1 1, then/ e V. Since/ is not a prefix
of Fo Y1 Y,//:/: Y1. But / is a prefix of F, so that there is some step in
Fo =:" F, which transforms Y. Hence, Y1 e V- E. Thus Ya does not occur
as part ofthe left context ofany rule in R (since such context is in E*). Let Fk_
be the first step which transforms Y1. Since Y1 is the left-most symbol in Fo and
since Fk_ Fk is the first step which transforms Y1, for each 1,..., k,
is the left-most symbol of Fi_ BiPiCi. Thus Y1 cannot be used as part of the
right context for any of the rules Pi Qi, 1 =< =< k 1. Hence for each 1, ...,
k- 1, Bi Y1Di for some Die V*, B e, and P Q is a context-free rule
with P Y1. Thus the derivation Flo =... FI, can be constructed by first
applying P Q to Y1 in Fo, then imitating the derivations Fo
and F =:, F,. Since Y1 is transformed by 1-Io =:, 1-11, this step is M(I/31) 1
bounded.

(ii) Assume the result for all /3 e V* such that I/1 < r for some r > 1, all
n => 1, and all derivations of length n in G.

(iii) Consider/ e V* such that I/1 r and consider a derivation Fo
of length n in G such that/ is not a prefix of Fo and/ is a prefix of F,. Let
{((Bi, Pi, Ci), (Bi, Qi, Ci))}7= be a production sequence for this derivation. Let
Fo Y1 Y, _>_ 1, for each Y e V. If some step of Fo =:" F, transforms
Y1, then the argument is just as in (i). Suppose no step ofFo F, transforms
any part of Y1 Y-1 for some q =< but some step transforms Y. Since/ is
not a prefix of Fo Y1 Y, this implies q =< I/1 r. Since Y is transformed at

One of the referees has pointed out that in the proof of Lemma it is sufficient for M to be any
function such that for > 1, + M(t- 1) =< M(t). The function we have used is the least function
with this property although a function such as M(t) will yield the result.
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some step, Yq e V E. Let Fk- Fk be the first step such that Yq is transformed.
Since no part of Y1 Y-1 is transformed in Fo F, and Yq e V- E,
no part of Y1 Yq can serve as part of the left context in any step of Fo
= rk_

If the rule applied in Fk-1 Fk is a context-free rule, then the argument
is just as in (i). If the rule used in Fk- = Fk is a non-context-free rule, say el Yqe2- cite2, then by choice of q, e must be a suffix of Y1 Yq- 1, and so le 11 =< q 1
< q __< [fl[ r. Thus Fk_ BkPkCk, where Pk 1Yq(z2 and BkO Y1 Yq-1.
If BkZ 1Yq(Z 2 is a prefix of Fo, then the argument is just as in (i), applying 1Yq(2- 17z2 first and noticing that this step is q __< 131 M([fl[) bounded.

If Bk Yq2 is not a prefix of Fo, then by choice of q the application of rules in
Fo ... Fk-1 transforms no symbols in Fo- YI"’" Yt to the left of Yq+l,
and these steps use no part of Bk Yq-- YI’" Yq as context. Thus for each

1, k 1, Bk1Yq Y1 Yq is a prefix of Bi, say B BkI YqDi for some
D V*. For each 1, ..., k 2, let A V* be defined by Fi_ BkZl YqAi,
so that A OiPiCi, and let Ak_ Dk- 1Qk- 1Ck 1" Then Ao Ak_
is a derivation of length k- 1 in G (with production sequence {((Di,Pi, Ci),
(D, Q c)>}-i= ) such that 02 is not a prefix of Ao but 0 2 is a prefix of Ak- 1. Since
lYq2--’ 172 is a rule in R, ]1] 12l. Also, I1] < r. Hence, ]2] < r and
k- 1 < n so that the induction hypothesis applies to the derivation Ao ...

Ak-1 and the string 2, that is, there is a derivation Vo Vk-1 of length
k 1 in G such that Vo Ao, Vk-1 Ak-1, and the step Vo V1 is M(Iz2]
bounded.

Construct the derivation FIo ... 1-I, as follows. For each i= 1,...,
k 1, let H Bkl YqVi, so that Ho rig- 1" NOW

and

rio Bkl YqVo Bkl YqAo Bko YD1P1C1 BIP1C1 ro

rik-1 BkOl YqVk- Bkal YqAk- BkOl YaDk-lQk-lCk-1
Bk-lQk-lCk-1 Fk-1.

For i= k,..., n, let Hi Fi. Thus, Fo Ho ’" Ilk-1 Fk-1 and
Fk Hk H, F,, so that Ho H,. Further, the step Ho H1
is ]BkOlYql-+-m(1021 bounded since Vo V1 is m(lz21 bounded. But

q N Jill and le21 =< lel] < Ifll so that even in the worst case (where 121 Ifl]
and q

JBka, Y] + M(lo2J) _-< ]flJ + M(lfll- 1)=

Thus rio ri1 is M(lfl[) bounded.
LEMMA 2. Let G- (V, Y, R, X) be a type 0 grammar which satisfies the

hypothesis of Theorem 1. For any w L(G), if X I" F w is a deriva-
tion in G such that there is a least where the step F Ft+ is not M bounded,
then there exist ri1, "’", rin V* such that X Ill =: =: 1-in is a derivation in
G, 1-I, w, and the derivation X ri1 ="" Fit+ is M bounded.

Proof. Let F al apZ1 Zq, where each a , each Z 6 V, and Z1 V
Z. Since the step Ft Ft+ is not M bounded, Z2 Zq e. Since X = F
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=g F, and F, w e E*, there is some first step of Ft F, which transforms
Z1. Let Fj Fj+ be that step. If j t, then Z1 is transformed in Ft F+ 1, so
that the step F F+ is 1 __< MG bounded, contrary to the choice of t. Hence,
$ j. Since Z1 e V E, no part of al a,Z1 serves as part of the left context of

any rule applied in F Fj. Since Z1 is the left-most nonterminal symbol in
each ofFt, F+ 1, "’", Fj,no part of al apZ1 serves as part ofthe right context of
any rule applied in Ft Fj. Thus, as in the proof ofLemma 1, the derivation
X FI FI, can be constructed by rearranging the order of application
of rules in the derivation F Fj.

In particular, if the rule applied in Fj Fj+ is a context-free rule Z1 --, 7
or is a context-sensitive rule eZlfl eTfl and

F al apZl Zq al ap_ ilZlflZl/l + 2 Zq,

then this rule can be applied to IIt to yield

I-It+ a apZ2 Zq,

where FI Fi for 1,..., t,j + 1,..., n, and Fit+z,..., 1-I+1 are obtained
from Ft Fjjust as in the proof ofLemma 1. In this case the step 1-It 1-It +
is 1 bounded.

If the rule applied in F2 Fj+ is a context-sensitive rule Zlfl Tfl and
Zlfl is not a prefix of Ft, then fl is not a prefix of Z2 Zq but is a prefix of 6,
where F2 Z16. Since the rules applied in Ft Fjuseno part ofal apZ1
as either left or right context, this sequence of rules can be applied to Z2 Zq
to obtain 6 in a derivation of length j t. By Lemma 1, this derivation can be
converted to another derivation Z2 Zq = ::, 6 of length j such that the
first step is M(fl) bounded. From the latter derivation Oust as in the proofofLemma
1),FI I-I2 is obtained such that I-I Ft, FI Fj,and the step I-I I-It+
is M(fl) + 1 <= MG bounded. Letting 1-I F for 1,..., 1,j + 1,..., n,
one obtains a derivation X I-I1 1-I, F, w, where the derivation
X => 1-I1 = I-It+ is M6 bounded.

Proof of Theorem 1. For any w L(G), consider any derivation X F1
F, w in G. Either this derivation is M bounded, or applying Lemma 2

at most n 2 times yields a derivation X I-I1 1-I, w in G which is
M bounded. Hence w LEFT(M, G). Thus

L(G)
_
LEFT(MG, G)

_
L(G).

Since LEFT(Mo, G) is context-flee, L(G) is context-flee. This completes the proof.
Let G (V, Z, R, X) be a type O grammar which satisfies the hypothesis of

Theorem 1, so that if aZfl ayfl R, then I1 > Ifll. If this restriction on length is
weakened, then L(G) is not necessarily context-free. To see that this is true, recall
that there exist type O grammars G (V, Z, R, X) such that each non-context-flee
rule is of the form ZY Z’Y, where Z e V Z, and Z’, Ye V, and such that L(G)
is not context-free. In such a grammar the non-context-flee rules are of the form
aZfl Tfl, where e so a Z*, fl V*, and 0 lal < Ifll 1. Thus the length

4 This fact has been observed by L. H. Haines (private communication).
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restriction in the hypothesis of Theorem 1 cannot be dropped (or even weakened
to, say, IJ + 1 >_ Ifll), Hence, with respect to the comparison of lengths of context,
Theorem 1 is as strong a result as is possible.

The family of context-free languages is closed under the operation of reversal"
LRfor ace {e}, aR a, for a a,E*, n >= 1, (aX an)R an al,

{wnlw L}. This fact is easy to prove by means of context-free grammars.
Hence, if the restriction on the form of the rules in Theorem 1 is altered to Z
7where E*, Z V E, , 7 V*, and I1 I1, then again L(G) is context-

free.

3. This section is devoted to showing that if the rules of a grammar have only
terminal strings as context, then the language generated is context-free. Formally,
this is stated in the following theorem.

THEOREM 2. If G (V, E,R,X) is a type 0 grammar such that every non-
context-free rule is of the form Z Tfl where Z*, Z V Z, and V*,
then L(G) is context-free

Intuitively one sees that "messages" cannot be transmitted over sufficiently
long terminal strings and here it is only terminal strings which are allowed as
context. However, the formal proof of the theorem is based on a lemma which
allows one to reduce the length of terminal context, so that by repeated use a
context-free grammar is generated.

Notation. For any type 0 grammar G (V, Z,R, X), let L max{lllzZfl
7fl R} and R max{lflllZfl - 7fl R}.

LV,MM, 3. Let G (V, Z, R, X) be a type 0 grammar satisfying the hypothesis
of Theorem 2. If R >= L and R >= 1, then one can construct a type 0 grammar
G a regular set T, and a gsm f such that"

(i) G satisfies the hypothesis of Theorem 2;
(ii) R R 1 and L L; and

(iii) f(L(G1)I"l T)= L(G). 5

Proof of Theorem 2. As pointed out at the end of 2, the family of context-flee
languages is closed under reversal. Thus Lemma 3 still holds if R and L (and
R, and L,) are interchanged throughoutrefer to the result as Lemma 3’.
Given G as in the hypothesis, applying Lemmas 3 and 3’ rn R + L times
yields a sequence G1,"., G,, of grammars, a sequence T,..., Tm of regular
sets, and a sequence fl, "’", fm of gsm’s such that for 1, ..., m, fi(L(G) T3

L(Gi_ ), where Go G and G,, is context-flee (since L,, R,, 0 implies Gm
is context-flee). Since the family of context-flee languages is closed under inter-
section with regular sets and under gsm mappings, this implies that L(G) L(Go)
is context-flee. This completes the proof.

The proof of Lemma 3 rests on the following observation. If X F =
F, is any derivation in G and some F has a substring fl Z* of length R or

greater, then every step ofF F, either transforms a symbol to the right of
fl independent of what is to the left of fl or transforms a symbol to the left of fl
independent of what is to the right of ft.

See [4] for definitions and facts about regular sets and gsm’s.
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Proof of Lemma 3. Without loss of generality, assume that every non-context-
free rule in R either has left context but no right context, or has right context but no
left context. Partition the set R as follows:let

S2 {(xZ (7 Rla E*, Z V E, and I1 < R},
$3 {aZaRlE*,ZV-E, andla[ =Ra},

S {Zfl fl nlZ V E, fl E*, and [fl[ <R},

S {Zfl fl RlZ V E, fl E*, and lfl[ =Ra}.

For each flE* such that [ill R and there exist Z V- E, V* with Zfl
fl R, let [fl] be a new symbol, and let E1 be the set of such new symbols. For

each such fl, let fl_ be the prefix of fl of length [ill- 1, i.e., if fl 6a where
a E, then fl_ 6; since [fl[ Ro, [fl- 11 Ro 1.

Construct the grammar GI (V1, E El, R, X) as follows. Let
V V EI. Let

U5 Zfl- fl_ [fl fl_ x[Z V- E and Zfl fl Ss}.
Let R (R $5) U Us. From the construction it is clear that G is a type O
grammar such that L, La and R, R 1.

Let
T (E U U fl_ I([]-

SO that T is a regular set. Let f be a gsm which yields the identity mapping on E
until a symbol [fl] E is scanned. Strings of the form [fl]fl_ are erased and f
returns to its initial mode of operation. (Recall that [[fl]fl_ 1 R, so that f need
only remember finitely many strings.) Any other operation outputs "garbage."
Hence for any [fl] E1 and any n 0,

f(#-1([#]#-,)’[]#) - ,f(([]- 1)"+ la) - la ,
where a E and fl fl_ a. Also, f(w) w if and only if w E*.

Before proving that f(L(G1)VI T)= L(G), let us informally explain the
construction of G1 and the role of T and f. Since R $5 R1 U5 and U5
is a "copy" of $5, it is enough to explain the use of rules in Us. When a rule

Zfl_ --e. fl-l[]fl-1

is applied to a string #Zfl_ l([fl]fl- 1)’a to obtain #7fl- l([fl]fl- 1)‘+ 10", one "guesses"
that fl is a prefix of fl_ a so that an application of Zfl - 7fl in G is being imitated.
The new occurrence of the symbol [fl] serves as a "marker" to indicate this guess
and also a "barrier" so that further steps take place either to the right of(fl_ lift])t+

or to the left of ([fl]fl_ 1)t+ 1. The "new" copy of fl_ in 7fl- l[fl]fl- is available for
use as right context in the future application of some rule. The "old" fl_ can still
serve as part of the left context, since if fl fl_ a, one still wishes to be able to
apply a rule such as baY- 6a if such a rule is in R. By hypothesis, L =< R,
so that [hal <= [ill Ra. Hence if one were able to apply this rule in a derivation in
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G and if the guess that fl is present is correct, then one can still apply this rule in an
"imitating" derivation in Gl--the symbol [fl] does not cause a conflict since

I[fl]fl-i a] 1 + Ifl-lal 1 + I/1- 1 + R > L.

The regular set T serves as a "filter" to restrict attention to terminal strings
which do have substrings in (_ l[fl])t+ lfl--i.e., to check that the guesses were
correct. The symbol [fl] also serves as a marker to tell the gsm to erase the sub-
string [fl]fl_ 1.

The equality f(L(G1) T) L(G) is established by showing that a derivation
in G resulting in a string in L(G) can be imitated by a derivation in G1 resulting
in a string in L(G 1) V) T, with the role offbeing obvious. The inclusionf(L(G1) fl T)_

L(G) is somewhat more complicated only because a derivation in G1 resulting
in a string in L(G1) T may need to be "rearranged" in order to be imitated in
G--the "guess" may have been made too soon. The proofs of these inclusions are
only sketched since the detailed induction arguments do not yield any additional
insight.

Claim 1. L(G)
_

f(L(G1) f] T).
Sketch of the proof. It is sufficient to show that derivations in G can be imi-

tated in G1 such that any resulting terminal string is also in T. Derivations in G
which do not use rules in Ss can be considered to be derivations in G1 and L(G)_

Z* T. Thus one need be concerned only with those derivations in G which
do use rules in

The set R1 of rules of G1 contains all the rules in R Ss as well as the set
Us, which is a "copy" of Ss. A rule in Us is of the form

where Ze V- Z, fl_l e22", Ifl-ll R 1, and Zfl 7fl is in Ss. Hence the
symbol [fl] is generated only as part of a string fl_ l[fl]fl-1. If one "imitates" a
derivation of G in G1, then to imitate an application of Zfl 7fl, the rule Zfl_
--’ 7fl-l[fl]fl-1 in Us is applied to a string 61Z(fl_l[fl])kf162, k >= O, to yield
6 ’(fl- lift]) + fl62 so that [fl] is generated as part of (fl_ lift])k + 1ft. Thus it is easy to
see that if X F1 = F, is a derivation in G with F, e 22*, then one can
construct a derivation X FI1 II, in G1 with II, e (Z U 21)* such that
1-I, e T and f(rI.) F,. Hence, L(G) c_ f(L(G1) fl T).

Claim 2. f(L(GI) fl T)
__

L(G).
Sketch of the proof. It is sufficient to show that derivations in G1 which

generate strings in L(G1) f-I Tcan be imitated in G. Such derivations in G1 generate
strings in L(G1) fl 22* if and only if they use no rules from Us. But clearly such
derivations are already derivations in G, so L(G1) f’l 22*

__
L(G); also, f(L(G1)

f-I 22*)= L(G1)f’l 22*. Hence one need consider only those derivations in G1
which use at least one application of a rule in Us.

Suppose X =.. F1 =*" =*" F, is a derivation in G1 such that F, e L(G1) f3 T
and such that for some k __< n the rule applied at the step Fk- Fk is a rule in Us.
Let {((Bi, Pi, Ci), (Bi, Qi, Ci))}’= be a production sequence for X F1 =

F., and let Pk "- Qk be Zfl_ --’ 7fl- l[fl]fl- 1, where Z e V Z and fl_ e 22".
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If P,Ck Z(fl_ l[fl])tflD for some _>_ 0 and D V]’, then in the "imitating"
derivation X H1 1-I. in G, the rule Zfl 7fl can be applied at the step
I-Ik-1 =: I-Ik" Since

f((fl-1 [fl])’ +lfl) fl,

the substring (fl_ 1[])t+ lfl of Fk is mapped onto the appropriate substring fl of
Suppose for some >= 0, Z(fl_ 1[/3])’/3_ is a prefix ofPC but for every j >= 0,

Z(fl_ l[fl])Jfl is not a prefix ofPC. Let Fa_ Fa be the first step which generates an
occurrence of [fl]. Since no rule of R has any symbol of E on its left-hand side
and since I/-xl R,, one loses no generality by assuming that for some m,
q < m <= n, every step of Fq Fm transforms a symbol to the left of [/3] and
every step of Fm F, transforms a symbol to the right of [fl]. Since F, T,
the derivation Fm F, produces a substring [fl]fl. Hence in the imitating
derivation XHI...H, in G, the portion H_I...
imitates Fm F, so that when imitating F_ F, the string fl is available
to use as right context. This step is imitated by H_ +,-m Ha+,-,, and then
Fq =:, Fm is imitated by Hq+,_m =:" H,.

(A formal proof of Claim 2 can be carried out by induction based on the
number of applications of rules from Us in a derivation X
such that F, L(G) f-I T(equivalently, the induction can be based on the number
of occurrences of symbols from Y:I in F,). The induction step is based on the in-
formal description given in the last paragraph.)

A construction similar to that in the proof of Lemma 3 can be used in con-
junction with the result of Ginsburg and Greibach cited in the Introduction to
establish the following generalization of Theorem 2.

COROLLARY. If G (V, E, R, X) is a grammar such that every non-context-free
rule is of one of theforms

(i) ap - 0, where e E*, I1 _-> 1, and p e (V 22)*;
(ii) pfl --, Off, where fle 2", ]fl] _>_ 1, and p e (V 22)*;

then L(G) is context-free.
There is one further restriction which generalizes the hypotheses of both

Theorems 1 and 2. Let G (V, 22, R, X) be a type O grammar such that every non-
context-free rule is of one of the forms

(i) aZfl - afl, where a e E*, Z e V 22, fl, ), e V*, and [al >-
(ii) Zfl aTfl, where fl 22", Z V E, a, V*, and I1 _-< I/1.

Thus it is required that either left or right context be a terminal string, and in either
case, the terminal context has length at least as great as the other context. We
conjecture that this restriction forces the language generated to be context-free.
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A SIMPLE ALGORITHM FOR MERGING TWO DISJOINT
LINEARLY ORDERED SETS*

F. K. HWANG AND S. LIN]"

Abstract. In this paper we present a new algorithm for merging two linearly ordered sets which
requires substantially fewer comparisons than the commonly used tape merge or binary insertion
algorithms. Bounds on the difference between the number of comparisons required by this algorithm
and the information theory lower bounds are derived. Results from a computer implementation of
the new algorithm are given and compared with a similar implementation of the tape merge algorithm.

Key words, algorithms, merging

1. Introduction. Suppose we are given two disjoint linearly ordered subsets
A and B of a linearly ordered set S, say

A-- {a < a2 <"" < am},
B {bl < b2 <"" < b,,}.

The problem is to determine the linear ordering of their union (i.e., to merge A
and B) by means of a sequence of pairwise comparisons between an element of
A and an element of B. Given any algorithm s to solve this problem, we are inter-
ested in the maximum number of comparisons, K(m,n), required under all
possible orderings of A U B. An algorithm s is said to be M-optimal if K(rn, n)

K(m,n), where K(m,n)= minx K,(m,n). In this paper, we give a simple
algorithm for solving this problem, called the generalized binary algorithm g,
and derive some bounds for K,(m, n)- K(m, n) which are substantially better
than two other known algorithms.

o has

S

2. Some preliminary discussions and results. Let the cardinality of A and B
be rn and n respectively. We assume rn =< n. Let 9o be the set of all possible order-
ings of A [.J B and k be the subset of 9o consistent with the results of the first
k comparisons we have made thus far. It is clear that, after making the ith compari-
son, 1, 2, ..., k, one of the two possible outcomes must have 1i1 _>_ 1/2[i-11
and that merging is achieved if and only if k contains exactly one element. Since

m + n
elements, or as we say, data points, we must have, for any algorithm

K(m, n) >= og2 m+m n)] =I(m’n)"

I(m, n) is usually called the information theory bound.
For m 1, the binary insertion algorithm is optimal and hence

(1) K(1,n) I(1,n)= [log2 (n + 1)].

Received by the editors August 30, 1971.

" Bell Laboratories, Murray Hill, New Jersey 07974.
As usual, we let Ix] denote the smallest integer >= x and Ix/the largest integer < x.
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In a recent paper [1], the authors constructed an M-optimal algorithm for
m 2 and thereby determined the values of K(2, n). It can also be shown that [2]

(2) K(m,n)=m+n- 1 for3 < m__< n=< m+ 3

and

(3) K(m,2m)=< 3m-2 form>__3.

The determination of K(m, n) for m >= 3 appears to be a very difficult problem.

3. Two existing algorithms. For the purpose ofcomparing with the generalized
binary algorithm to be presented in the next section, we mention two existing
algorithms.

I. The "tape merge" algorithm t. The "tape merge" algorithm is the com-
monly used procedure to merge two tapes or lists of sorted items. It can be described
by the following steps (details of storing and stop conditions are omitted):

TM1. Compare am with b,.
TM2. If am< b,,setn =n- l and go to TM1.
TM3. If a > b,, set rn m 1 and go to TM1.
It can be easily shown that

Kt(m,n) rn + n- 1

and hence the "tape merge" algorithm is M-optimal for n =< rn + 3 [2].
II. The "simple binary" algorithm s. The "simple binary" algorithm can be

described by the following steps"
SB1. Merge % into B by the binary search procedure.
SB2. Pull out % and elements of B > am. (These are already in order and

larger than the rest of the elements ofA U B.) Set m m 1 and redefine m and n.

(The new n _>_ new m.) Go back to SB1.
It is clear that under the worst possible outcome, % is always larger than

b, and hence no element of B is discarded. Therefore,

Ks(m, n) rn [log2 (n + 1)].

For m 1, we have

Ks(m, n) K(m, n).

However, we shall show in the next section that

Ks(m, n) > K(m, n) form> 2.

The distinctive feature of these two algorithms is their simplicity, although
in general, they are quite inefficient in the sense that both Kt(m, n) K(m, n) or
Ks(m, n)- K(m, n) can be very large. In the next section, we shall present an
algorithm which matches the two abovementioned algorithms in simplicity and
yet improves a great deal on their efficiency.

4. The generalized binary algorithm g. For the sake of simplicity, we shall
assume that whenever we are required to merge two disjoint linearly ordered
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sets with cardinalities x and y respectively, n will always refer to max (x, y) and
m, to min (x, y), so that n > m.

The generalized binary algorithm may now be described as follows (again,
details of storage and stop criteria are omitted)"

GB1. Let [log2 (n/m)J and x n 2 + 1.
GB2. Compare am with bx. If am < bx, pull out the set of all elements in

B __> b, say C. We are then left with the problem of merging two disjoint sets A
and B C. Redefine m and n and go back to GB1. (Note that B C has n 2
elements and we need to interchange the role of m and n if and only if n m.)

GB3. If am > bx, merge a,, into the set C bx by the simple binary algorithm.
Note that C b has exactly 2 1 elements and am can be merged into the set
in exactly e more comparisons. Pull out % and the set D of all elements in B > am.
We are then left with the problem of merging the set A am with the set B D.
Redefine m and n and go back to GB 1.

For this algorithm g, Kg(m, n) is given by the following theorem.
THEOREM 1. Let [log2 (n/m)]. Write n 2m + 2p + O, where p and 0

are uniquely determined nonnegative integers satisfying 0 <= p < m, 0 < 0 < 2.
Then Kg(m,n) (2 + e)m + p 1.

Proof. If e 0, n m + p, and it is clear that the worst possible data forces
the algorithm g to be identical with the algorithm discussed in the previous
section.

Hence Kg(m, n) Kt(m, n) m + n 1 2m + p 1.
If m 1, p must be zero and n 2" + 0. It is clear that a > b is the worst

outcome and hence Kg(1, n) K(1, n) 1 + e.
We now prove Theorem 1 by induction on m + n. Assume the theorem true

for all m’, n’ such that m’ + n’ < m + n, and for all m, n with e 0, or m 1. We
prove the theorem true for m, n with e > 0 and m > 1. The theorem is trivially true
form+ n 2.

After making the first comparison of % with b, we have two possibilities"
(i) a < bx, and we are left with the problem of merging two sets with m

and n 2" elements.
(ii) a > bx. After merging a into the set C b in e more comparisons,

we are left, in the worst case, with the problem of merging two sets with m 1
and n elements. Hence

Kg(m, n) max [1 + Kg(m, n 2), 1 + + Kg(m 1, n)].

Now,

Hence by induction,

Kg(m

2"m+2(p- 1)+ 0

2-1m + 2-1(m- 1) + 0- 2

2-1m + 2-1(m 2) + 0

(2+ e)m+(p- 1)-

(1 +e)m+(m- 1)- 1

(1 +e)m+(m-2)-

ifp 4: 0,

ifp 0 and 0 >__ 2"-1,

ifp=0and0<2-1.

ifp - 0,

ifp 0 and 0 => 2-1

ifp=0and0<2-1
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Similarly,

n

2(m- 1)+2(p+ 1)+0

2x+(m- 1)+ 0

2 l+’(m- 1)+2+0

ifp<m-2,

ifp=m-2,

ifp=m- 1.

Hence by induction,

1 n)= (2+)(m- 1)+(p+ 1)- 1
Ke,(m [(3 +)(m- 1)- 1

ifp<m-2,

otherwise.

Therefore,

(2 + )m + p- 2
1 +Ke,(m,n-2)=

(2+)m+p- 1

ifp 0 and 0 < 2"-1

otherwise,

and

1 ++ Kv,(m- 1,n)= {(2(2++e)m)m++pp--21 ifp=m- 1,

otherwise.

Since the conditions p 0 and p m- 1 are mutually exclusive for m > 1,
we have

Kg(m, n) max [1 + Kg(m,n 2), 1 + + Kg(m 1,n)]

=(2 + )m+ p- 1,

and hence the theorem is proved.
Comparing the general binary algorithm g with the tape merge algorithm

and the simple binary algorithm s, we have

K,(m,n)- Kg(m,n)=(m+n- 1)- [(+ 2)m+p- 1]

=m+2"m+2p+0- 1-(+2)m-p+ 1

=(2-- 1)m+(2- 1)p+0.

Hence Kt(m, n) Kg(m, n) only if 0, or 1 and p 0 0. Otherwise,
Kt(m, n) Kg(m, n) n ( + 1)m p > 0. Similarly,

K(m,n)- K,(m,n)= m[log2 (n + 1)] [( + 2)m + p 13
__>m(+ [log2(m+p)] + 1)- [(+2)m+p- 1]

=m(/log2(m+p)- l]-p+ 1.

Hence Ks(m, n)= Kv,(m,n only if m 1, or m 2, p 1. Otherwise K(m, n)
-Kg(m,n) >= m([log2 (m + p)] 1)- p + 1 > 0.

It is often convenient to refer to a set of numbers n(m, k) as the largest n
such that Kl(m, n) <= k. Table 1 gives some of these numbers for the algorithms
t, s and g. Also we have for k (2 + e)m + p 1,
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ng(m, k)= 2(m + p + 1)- 1,

nt(m, k) (1 + a)m + p,

ns(m, k) 2 + 2 1 provided 2 + 2 l>m.

(m, k) (2, 4) (2, 24)

ng(m,k) 3 4095

n,(m,k) 3 23

ns(m,k) 3 2047

TABLE

(4,14) (4,90)

15 223

11 87

7 222-

(10 10

256,511

9,001

1,023

5. Bounds on K(m,n)-I(m,n). Let n=2m+2p+ 0 with 0=<p <m,
0_<_0 <2,_>_0;andk=Kg(m,n)=(2+)m+p- 1.

THEOREM 2. Kg(m, n) I(m, n) <= m 1.

Proof. We have

I(m, n) og2
m

and

m+n (n + 1) (2m + 2p + 0 + l)
m! m!

[2m(1 + p/m)]" 2"m"(1 + p/m)" > 2m+ +p

m! m!

since

Hence

m! <= ram2x-m and (1 -at- p/m) >= 2p.

log2
m+

>(o+ 1)m+p- 1,

and

log2
rn

_>_(e+ 1)m + p.

Therefore,

Kg(m, n)- I(m, n) <= m 1.
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COROLLARY 1. For m > 1 and 0 2 1,

Kg(m, n)- I(m, n) <= m- 2.

Proof. For m > 1 and 0 2 1, we have

m + n (n-+- 1) [2m(1 -+-(p-k- 1)/m)]
> >

m m! m!

and the proof parallels the proof of Theorem 1.
For larger m, a much sharper bound for Kg(m, n)- I(m, n) can be derived

by means of Stirling’s formula. First we prove a lemma.
LEMMA 1. Let 0 (1 + m/n)mm and Xm be defined by

Then

since

Therefore,

(n -Ji- Xm)m-- (n + m)(n + m- 1)... (n + 1).

Xm max I1,0(n + m) n1e

Proof. It is clear that Xm >= 1. From Stirling’s formula, we have

(n + m)!
(n + x,,)m= (n + m)(n + m- 1)... (n + 1)= n!

x(n + m)n+m+ 1/2 e-(n+m)+O1/(12(n+m))
0<

F/n+ 1/2 e-n+Oz/(12n)

> 1 + (n + m) e- /(n

01 <1

> m(n q- m) e

+ n
1 + > 2 x/(2n) 41/(4n) > e a/(a2n)

X >-(n + m)- n m
e

Some typical values of xm/m are given below in Table 2.

TABLE 2

n/m

>0.4715

2.25

>0.4831

2.594

>0.4907

100

2.705

>0.5065

1000

2.717

>0.5279
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THEOREM 3. Let e (0 + Xm)/2 and min (p + e, m). Then

I(m,n) log2
m

=> (1 + e)m + [-t + qm],

where

qm (log2 e 1)m
log2 e

12m
1/2 lOg2 (2rcm)

0.12
0.442695m 1/2 log2 (2m).m

n+ m) (n +
m!
Xm)m

(n + x,.)

2%mm e-m+ 1/(12m)

(2m + 2p + 0 + Xm)" e 1/(12,,)

Nm
(2m)m(1 + (P + g,)/m) em-1/(12m)

m
> 2m+ + (log2e)(m 1/(12m)) log2q/-n:m.

Therefore

[ (m+I(m,n) log2
rn n]>(l= +a)m+ [t+qm],

which is to be proved.
Since K(m, n) >= l(m, n), we have the following corollary.
COROLLARY 2.

Kg(m, n)- K(m, n) <= Kg(m, n)- I(m, n) <= rn + p 1 It + qm]"

Table 3 gives some values for

qm (log2 e 1)m
log2 e

12m
1/2 log2 (2rcm).

TABLE 3

qm 2.08 1.0005 --0.832 --0.585 --0.299

16

0.179 3.65

1024

446.9
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Note that > p and qm > 1 for m => 3 so that Corollary 2 implies Theorem 2
for m => 3. For m => 6, qm > 0 and hence Corollary 2 also implies the conclusion
of Corollary 1 regardless of the value of 0. For large m, say m > 100, we have
Kg(m, n) l(m, n) < 0.6m 1, and the "best" bound occurs when e 0, p 0.52m,
x,, 0.48m, qm ’ 0.44m and this gives Kg(m, n) I(m, n) 0.08m.

6. Computational results. In this section, we discuss the storage requirements
when the generalized binary algorithm g is implemented by a computer program
and compare its running time with a similar program implementing the commonly
used tape merge algorithm t. We assume that the sorted lists Am and B, to be
merged are stored on tapes (or other external devices) if they are too large to be
accommodated in core. These can then be read in sequentially in sorted order
as needed and the elements of the merged list C,,+, written in similar sorted order
onto output devices as-soon as they are sequentially determined. As can be seen
from the description of the algorithm g, for efficient comparison we need the
elements a, and those in B from bx to bn in core. This requires a storage space
of 2 elements ( llog2 (n/m)J) which is approximately equal to n/m. In general,
this will not be excessive. For example, if n 107 and m 10’, an average of
103 elements of B are required to be in core and this ratio will be approximatelY
maintained if the data in B, and A,, are uniformly distributed in some interval.
If n/m becomes too large, a slight modification of the algorithm can be made,
say, to compare a,, with bx, where x n 2a + 1 for some smaller fl, without
substantially affecting its efficiency.

Assuming the data in Am and B, are uniformly distributed in some interval,
the expected number of comparisons Et(m, n) required by the tape merge algorithm
can be seen to satisfy the following recurrence relation:

m g/
(R) Et(m n) 1 + Et(m 1, n) + Et(m, n 1); E,(1,1) 1.

m+n m+n

Solving (R), we have

m

1
E(m, n) mn ++1 n+l

=m+n- +
+1 m+l

which is only slightly less than K,(m, n) m + n 1.
When n/m is large, as in the case of updating telephone directories or library

materials, we see that E,(m, n) , m + n n/m can be considerably larger than
Kg(m,n) (3 + [log2 (n/m)J)m, the maximal number of comparisons required
using the algorithm g. Even when the logic involved in making one comparison
using the proposed algorithm g is more involved than making one comparison
using the tape merge algorithm t, substantial savings in computer time can be
achieved. A computer program (FORTRAN, GE-635), implementing both the tape
merge algorithm and the generalized binary algorithm g (hopefully with equal
degrees of efficiency), was written to test our assertions on some problems with
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randomly generated data. The results are presented in Table 4. As can be seen,
the saving in time is great when n/m is large.

TABLE 4

150
100
100
20

n/m C, C T T

1500 10 1649
2000 20 2099
10000 100 10069
3000 150 2873

784 75.6 40.2
620 94.8 32.6
765 462.0 58.0
180 131.5 13.5

Ct number of comparisons made by the tape merge algorithm t;
Cg number of comparisons made by the generalized binary algorithm g;
T, time (in milliseconds) spent in making the comparisons using t;

T time (in milliseconds) spent in making the comparisons using g.

1/2
1/3
1/8

1/10
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SYMMETRIES IN DATA GRAPHS*

ARNOLD L. ROSENBERG-

Abstract. Data graphs were introduced as a vehicle for studying uniformities in the structure of
graphs underlying data structures. This paper is devoted to investigating symmetries in data graphs.
Such symmetries are of no little significance in every phase of the computational process. They can
often be exploited to formulate more efficient algorithms, to simplify the specification ofthese algorithms,
and to facilitate analysis of the resulting programs. The main thrust of this paper is to investigate the
influence ofvarious structural features ofdata graphs on the types of symmetries the data graphs enjoy:
what features ensure the presence of symmetries of various types, and what features limit the possible
types of symmetries. These questions are studied first on the class of all data graphs, and then on the
class of addressable (= realizable by relative addressing) data graphs.

Key words. Data graph, symmetry, automorphism, addressable data graph, addressing scheme

1. Introduction. A data graph can be viewed as a strongly-connected labeled
directed graph or, alternatively, as a finitely generated transitive partial operand
[1, pp. 250 ft.]. From the former vantage point, one can employ data graphs to
study uniformities in the structure of data structures. The latter vantage point
permits one to enlist the theory of semigroups in these studies. Numerous other
graph-like models for data structures have been formulated; an extensive biblio-
graphy on this subject appears in [4].

In [2], [3] we studied certain uniformities in data graphs, which relate to the
task of realizing these data graphs in a random access memory. The main results
of those papers were characterizations of the class of data graphs which are
realizable by "relative addressing" and of the proper subclass whose members
admit "relocatable" realizations. In each case we presented a characterization
which favored the graph-oriented point of view and one which was more algebraic
in nature. We further obtained a number of results concerning the structure of
data graphs in these classes, which suggest that the classes are of interest indepen-
dent of the motivating problem of implementation.

The present paper is devoted to studying another class of uniformities of
data graphs, which are important in a computational environment. From a

graph-oriented point of departure, the uniformities studied are symmetries of data
graphs; from an algebraic viewpoint, they can be thought of as data graph auto-

morphisms. The main thrust of our investigation is to ascertain what types of
symmetries a data graph can possess, and how the set of symmetries of a data
graph is constrained by various features in the structure of the graph. Of special
interest is the relationship between the symmetries of a data graph and various
other types of uniformity it may enjoy.

* Received by the editors August 4, 1971, and in revised form December 22, 1971.

]" IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598. This research
was supported in part by the Office of Naval Research under Contract N00014-69-C-0023.

For background, we have included definitions of "realization" and "relative addressing" in an
Appendix which presupposes the notions in 2.
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Motivating our study is the observation that symmetries in data structures
can be of no little significance in a computational environment. At every stage
of the computing process, symmetries can be exploited. They are often helpful
in formulating efficient algorithms, in simplifying the specification of algorithms,
and in analyzing the resulting programs. If parallel computing facilities are
available, one may be able to exploit symmetries by using several (virtually
identical) copies of a single program to operate on symmetric portions of a data
graph. Moreover, one can often enlist symmetries to facilitate the detection of
other uniformities of interest, for instance, those which guarantee relative address-
ability. The development in the sequel is strongly influenced by this computational
motivation.

The remainder ofthe paper is organized in three sections. Section 2 introduces
the basis of our study, data graphs and symmetries thereof. An elementary result
which is useful in the sequel is presented, and some pertinent related literature is
mentioned. Section 3 is devoted to investigating the set of symmetries of a data
graph. Particular attention is paid to fixed points of symmetries, to symmetries
induced by links in the graph, and to conditions which guarantee the presence
of symmetries. In 4, we coalesce the material of 3 with that of our earlier papers
[2], [3] by considering symmetries of addressable (= realizable by relative address-
ing) data graphs. The presence of the additional uniformities allows us to sharpen
materially a number of results from 3. We discover a strong relationship between
the symmetries of an addressable data graph and its "addressing schemes." This
relationship lends insight into the nature of both types of structural uniformity;
it further facilitates verifying the presence of one type of uniformity in the known
presence of the other. Throughout the paper, we present sample applications of
the results derived.

We have attempted, insofar as is feasible, to make this paper self-contained.
Perforce we could not reproduce from [2 our discussion of the considerations
which led to the form of our model.

Preliminary to our technical development, a word about notation will be
useful. Since we are studying uniformities in data graphs, it is not surprising that
many of our results are most succinctly presented as asserting the commutativity
of diagrams. To facilitate subsequent exposition, we establish the following con-
ventions. Let A, B, C, D be sets; let :A --, B, fl:B D, 7:A C and 6:C D
be partial functions. The symbology

A B

is intended to mean that fl 76 as partial functions from A into D; i.e., the
two functions are simultaneously defined and are equal on their joint domain.

2. Data graphs and symmetries. In this section we define the basic notions
to be studied and mention briefly some related work. While we attempt to
motivate our formal notion of symmetry, we make no analogius arguments
about the data graph model. The considerations which shaped our formulation
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of data graphs are discussed at length in 1 and 3 of [23, to which the interested
reader is referred.

2.1. Data graphs. A data graph is specified as an ordered pair F (C, A),
where

(i) C is a countable set (of data cells);
(ii) A is a finite set of partial transformations of C (the link-transformations);

subject to the condition
(iii) for each pair of cells c, d C, there is a transformation e A such that

c d.
One can view the system (C, A) as a labeled directed graph in a straight-

forward manner: The set C is the set of vertices of the graph; there is a directed
edge (c, c2), labeled by 2, from cell c to cell c2 precisely when c e A(2) (the domain
of 2). Under this interpretation, condition (iii) above asserts the strong-connectivity
of the graph.

In order to illustrate our model and to motivate the sequel, we present two
data graphs which display two distinct types of symmetry.

Example 2.1. Our first example, depicted in Fig. 2.1, is a tree 3 with two
successors and a single predecessor. More formally,

F2.1 (C, A),

where

(a) C N {1,2,3,...};
(b) A {at, a,

for each n e C,

nat 2n, the right-successor,
nr 2n + 1, the left-successor,
nc [n/2 l, the predecessor.

Here [qJ denotes the integer part of the real number q. Note that both a and a
are total, while c is not since lr 0 N.

Example 2.2. Our second example, depicted in Fig. 2.2, is a one-ended ladder.
More formally,

where

I-’2. 2 (C, A),

(a) C=Nx{0,1};
(b) A {0, rr,

Throughout the paper, A denotes the monoid generated by A under functional composition,
with identity lc (the identity map on C).

Such anthropomorphic names for our data graphs are presented only to aid the reader’s intuition
no formal connotations should be assumed.
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FIG. 2.1. F2.1’ A binary tree

for each (n, a) C,

(n, a)a (n + 1, a), the successor,
(n, a)n (n 1, a), the predecessor,
(n, a)q (n, a + l(mod 2)), the flip.

Note that, in this example, the functions a and q are total, but n is not since
(1, a)n (0, a) C.

FIG. 2.2. F2. A one-ended ladder
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2.2. Symmetries. A glance at Figs. 2.1 and 2.2 renders obvious the assertion
that the two data graphs presented enjoy nontrivial symmetries. Our formal
notion of symmetry is shaped by considering these data graphs, and certain
special types of symmetry emerge from this consideration.

Looking first at F2.2, we observe that the shape of this "ladder" is unchanged
by interchanging the "uprights." More formally, let us define the bijection
fl:N x {0, I}N x {0,1} by

<n,O>fl <n, 1>, <n, l>fl <n,O>,

for each n N. The system (Cfl, A) is then isomorphic4 to F2. 2 (C, A). Thus,
the bijection/3 exposes (or induces) a nontrivial symmetry of F2. 2 Two properties
of this symmetry are worthy of note: (i) The symmetry leaves unchanged the set
A of link-transformations. (ii) The symmetry is induced by an element of Ae; in
fact,/3 q.

Turning now to F2., we remark that this tree enjoys a more complicated
type of symmetry, one which has neither of the previously noted properties.
Intuitively, the symmetry alluded to permits one to "fold" the tree about its root

(cell 1) so that its two maximal subtrees coincide. This symmetry requires inter-
changing not only cells, but also links. Formally, let us define a cell bijection

fl’C C and a link bijection//" A A as follows.
(a) For eachkCNandie{0,...,2- 1},

(2 + i)fl 2k+l- (i + 1);

One easily verifies that the system (Cflc, Afll) is isomorphic to the data graph F2.1
Further, this symmetry does not leave elements of A unchanged; nor is it induced
by a link transformationi.e., tic AL

Our definition of a symmetry is a direct generalization of the latter example.
The former example, however, suggests special types of symmetries which are
studied further in the sequel.

DEFINITION. A symmetry of a data graph F (C, A) is specified by a pair of
bijections Z (tic, l)’ where

(i) tic :C C is the cell bijection;
(ii) /l ]me me, the link bijection, is a monoid isomorphism which maps A

onto A;
subject to the condition,

(iii) for all 2 A,

C C

C C

As we noted earlier, a symmetry can be viewed in algebraic terms as a data
graph automorphism. In [1], the notion of an operand automorphism is discussed

The intended notion of isomorphism should be obvious.
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briefly. In the present context, this latter notion corresponds to a fixed-link
symmetry, i.e., one with fll 1a,.

In order to emphasize the restriction that fll map A onto A, we present one
final example of a symmetry. This example indicates that the gross topology of
a data graph does not suffice to characterize its symmetries.

FIG. 2.3. 1"2.3: A triangle with only rotational symmetries

p P

FIG. 2.4. F2.4: A triangle with a "complete" set of symmetries

Example 2.3. Consider the following two "triangles," depicted in Figs. 2.3
and 2.4, respectively.

(A) F2. (C, A1),

where

(a) C {0, 1, 2};
(b) A {p};

for each n C, np n + 1 (mod 3).

(B) C:. (C, A),

where

() A {p, } A U {};
for each n e C, ntt= n + 2 (mod 3) p2.5

If 2 is a transformation of a set C, then 2 c, 21 2 and 2 22k for all k N; thus, the
multiplication is in At.



46 ARNOLD L. ROSENBERG

Now the group of symmetries of a triangle comprises six symmetries, corre-
sponding to the following permutations of the cells:

(i) 01 (0)(1)(2), the identity,
(ii) 02 (012), rotation 1,

(iii) 03 (021), rotation 2,
(iv) 0, (0)(12), flip 1,
(v) 05 (01)(2), flip 2,
(vi) 06 (02)(1), flip 3.

Both F2. 3 and F2.4 have symmetries (i)-(iii), as fixed link symmetries. In contrast,
I-’2., enjoys symmetries (iv)-(vi), while F2. 3 does not. To verify this, let us restrict
attention, with no loss of generality, to (iv).

For 1-’2.3 lp 2, 104 2, 2p 0, 204 1. Thus,

lpO4 1 4= 0 loop.
(Since A is a singleton, we have no choice but to fix links.)

For F2.4: Define fl by pfl t, #fl p. Then we have

Op04 2=00#, 0#0 =O0p,

lpO4 1 104#, 1#0, 0 104p,

2pO4 0 20#, 210 2 204p.
Thus, F2.4 enjoys all the symmetries ofa triangle, while F2.a has only rotations.

Note that p2 so that, if we dropped the requirement that fl map A onto A,
the distinction just noted would disappear. However, from a practical point of
view it appears to be essential, given the complexity of data structures, to operate
insofar as is possible with the data graph which is presented rather than with its
transitive closure. This is all the more important in view of our strong-connectivity
postulate.

We close this preliminary section with an elementary result that is extremely
useful in the sequel. This result asserts that symmetries of even infinite data graphs
can be specified in a very simple finite manner.

THEOREM 2.1. Let F (C, A) be a data graph. Given an arbitrary bijection
A A and an arbitrary pair of cells (c, d) C x C, there is at most one symmetry

Z, (tic, fit) of F which satisfies: (i) fl
_

fl, and (ii) {(c, d)}
_
c .6

Proof The result follows from the strong connectivity of data graphs. To
wit, let E (fie, fl) be a symmetry of F (C, A). Let Co C be designated.

Pick an arbitrary cell e C. By strong-connectivity, there is a transformation

21 2,A such that Co e. By a straightforward induction on the
definition of symmetry, one finds that

efl (Co)fl (Cofl)(fl).
Moreover, we know that fl, (2fl) (2,fl) since fl is a monoid isomorphism.

Thus, if we are given the cell d Coil and the restriction7 fl of fl to A, we
know that efl d(2fl) (2,fl). In other words, the entire symmetry 5 is induced
by the pair (co, d) and the finite function fl, as was claimed.

Whenever convenient, we identify a function with its graph; i.e., we view a function as a relation
hence, the notation "_ ".

Since fl, maps A onto A, fl must be a bijection of A onto A.
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2.3. Related work. The model of a data graph is so general as to admit a
multitude of disparate interpretations. One can, for example, view a data graph
as an outputless automaton which is incompletely specified (since elements of A
need not be total) C is the set of states and A the set of. inputs to the "automaton."
From this viewpoint our subject of study is input-renaming (since l can be non-
trivial) automorphisms of automata. There is a rich literature on (input-fixing)
automorphisms of (completely specified) automata; selections [5], [6] from this
literature have particular pertinence to the present paper. Several of the results
in the sequel can be viewed as generalizations of results in [5], [6], the general-
izations arising from the partialness of elements of A and the nontriviality of fit.
Although the proof techniques of the cited papers often find close analogues in
our proofs of these results, the two generalized assumptions demand full proofs
rather than citations. In 3.3 and 3.4 particularly, very close analogues of certain
results in [5], [6] appear; in fact there is some duplication in one or two instances.
The reader may find it of interest to compare the results and development in the
cited papers with that of the present paper, given the materially different points
of departure.

3. General properties of symmetries. In ths section we investigate properties
of symmetries, which do not presuppose additional structure in the data graph.
We begin with a number of elementary results which expose certain relationships
between cells/links and their images under symmetries. We then investigate
symmetries with fixed points, either fixed cells or fixed links. Next, we consider
the conditions under which a symmetry of F (C, A) is induced by a transforma-
tion At; the reader will recall that the data graph F2.2 has such a symmetry.
Finally, we note certain conditions which guarantee the presence of certain types
of symmetries.

3.1. Elementary properties of symmetries. Our identification of symmetries
as automorphisms of data graphs presages our first result.

THEOREM 3.1. The set of symmetries of a data graph is a group.
Proof If El (fll),//11)) and 2 ---(2)(/c ,/312)) are symmetries of F (C, A),

then their product symmetry is defined to be

We show that the set of symmetries of F is a group under this (obviously well-
defined) multiplication.

1. The associativity of the defined multiplication follows immediately from
the associativity of functional composition.

2. The identity symmetry Z1 (lc, 1A) is an identity under this multiplication.
3. Given a symmetry E (tic, ill), we claim that the pair Z-1 (tic-1, fl/-1)

is a symmetry which is inverse to under the defined multiplication. First note
that ZZ-I= Z-1Z 2;i. Thus it suffices to show that Z -1 is a symmetry.
Clearly tic- and/3- are both bijections of the appropriate types. Further, for all
c C and all 2A:

(i) If (cfl[ 1) A(2fl- 1), then

((C-1)(,/-- 1))c (C? lc)(,- ll C;



48 ARNOLD L. ROSENBERG

hence, c A(2) and

1).

(ii) If c A(2), then immediately,

but, since Z is a symmetry,8 this implies cfl A(2fl/- 1).
This establishes part 3, and the theorem is proved.

Our next result sets off the argument in part 3 of the preceding proof. While
the result is obvious, it has numerous applications, and so merits explicit mention.

THEOREM 3.2. Let Z (tic, ill) be a symmetry of the data graph F (C, A).
(a) For each e At, A(flt (A())flc.
(b) For all c C and all At, c A() if and only if Cflc A(fl/).
Proof A straightforward induction on the diagram defining symmetries

yields, for each At, the diagram

C

C ,C

COROLLARY 3.1. The image ofa total (respectively, nontotal) link-transformation
under a symmetry is again a total (respectively, a nontotal) link-transformation.

COROLLARY 3.2 Ifonly total link-transformations are defined at a given cell, the
same must be true of the image of that cell under any symmetry.

As we come upon general principles which have direct applications, we shall
present samples of these applications. Corollaries 3.1 and 3.2 yield such applicable
principles for delimiting the set of symmetries of data graphs.

PROPOSITION 3.1. The data graph F2.1 enjoys precisely two symmetries,
namely, the identity symmetry and the symmetry presented at the beginning of 2.2.
(This latter must, by Theorem 3.1, be self-inverse.)

Proof Our assertion is verified via the following observations.
Observation 1. The cell denoted 1 is fixed by all symmetries.9

One easily verifies that cell 1 is the unique cell of I"2.1 which is in the domain
of only total link transformations. (This is verified rigorously in [3].) By Corollary
3.2, therefore, cell 1 must be fixed by all symmetries.

Observation 2. The transformation 7r is fixed by all symmetries.
Since ar and at are both total while r is not, this assertion is immediate by

Corollary 3.1 and the fact that fll maps A onto A.
Thus, the only symmetries (tic, [31) of F2. are those for which fll 1A, and

those for which arfll al and alfl a,. By Observations 1 and 2 in conjunction
with Theorem 2.1, F2. can have at most one of each type (since either case would
specify the pair (1, 1) C C and the restriction of fll to A). However, we have
exhibited one of each type, so the proposition is established.

Recall that the defining diagram asserted that, for all d e C and # e 2, d e A(#) if and only if
A(#fl). Apply this with d cflg and # 2/3/-
That is, lflc for any symmetry (tic, fl) of F2.1
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To lead to a second application, we present the following data graph.

FIG. 3.1. F3.a: A one-ended linear list

Example 3.1. We present a linear list, depicted in Fig. 3.1.

F3.1 (C, A),

where

(i) C N;
(ii) A

for each n 6 C,

nor n + 1, the successor link,
nrc n- 1, the predecessor link.

PROPOSITION 3.2. The data graph F3.1 has no symmetry save the identity
symmetry.

Proof Again, a series of observations yields the result.
Observation 1. Cell 1 is fixed by every symmetry.
As in the preceding proposition, cell is unique in being in the domain of

only total transformations. We can, therefore, invoke Corollary 3.2.
Observation 2. Both a and rt are fixed by all symmetries.
This is immediate by Corollary 3.1 since cr is the unique total, and rt the

unique nontotal member of A.
As before, an invocation of Theorem 2.1 completes the proof.
We are not yet in a position to characterize the symmetries of the other data

graphs we have introduced. We turn now to a study of fixed points of symmetries;
new principles, which give us a handle on these other data graphs, will emerge
directly. One final general result will facilitate the development.

THEOREM 3.3. Let Z (tic, l) be a symmetry of F (C, A). For all 2 A,
both 2 and 2fig have the same order.1

Proof The proof is obvious, since /l is a monoid isomorphism.

3.2. Fixed points of symmetries. Our study of fixed points of symmetries is
dually motivated. First, one would expect "partially degenerate" symmetries--
those for which one of the bijections is the identity map--to obey stricter laws
than do general symmetries. Such strengthened properties may prove computa-
tionally significant. Second, in studying parallel computation on data graphs, as
we suggested in the Introduction, cells which are fixed by symmetries represent
potential memory conflicts. More information about how such fixed points of

10 The order of 2 in A is the smallest positive integer k such that 2 lc; it is 0 if no such k exists.
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/c occur may help to detect and avoid such problems. We begin with some general
results on partially degenerate symmetries.

We call E (, l) afixed-cell symmetry if// 1 c, and we call it afixed-link
symmetry if/l 1a;in the former case we write 2; (1,/l) and in the latter

(/c, ).
THEORZM 3.4 (a) If Z is a fixed-cell symmetry, then X, . That is, the

identity symmetry is the unique symmetry whichfixes all cells.
(b) If Z (tic, 1) is a fixed-link symmetry, and if fl has a fixed point, then

2; 2;t. That is, nonidentity fixed-link symmetries can fix no cells.
Proof (a) For arbitrary 2 A, if/ 1 c, then for all c e C,

C (C) (Cc)(l) C()l,l).

In other words, 2 2ill. Since 2 was arbitrary, we conclude 2; 2;i.
(b) If J?l 1a, and if c0/ Co for some cell Co, then 2; Z1 by Theorem 2.1.
The reader will recall that the nonidentity symmetry of F2. 2, described at

the beginning of 2.2, fixes no cells. Theorem 3.4 assures us that this property
is not mere coincidence, since that symmetry fixes all links. The nonidentity
symmetry which we found for F2.1 demonstrates that a symmetry can fix some
cells and some links without degenerating.

Theorem 3.4 has a direct application to F2. 3

PROPOSITION 3.3. The data graph F2.3 has no nonidentity symmetry which

fixes a cell. In particular, it does not enjoy any ofthe "flip" symmetries.

Proof Since A is a singleton, any symmetry of F2. 3 must fix links. Theorem
3.4(b) thus yields the result.

In [2] we briefly considered fixed-link symmetries under the name trans-

positions. A result from [3], which deals with a weaker version of transpositions,
yields the following theorem which supersedes Theorem 3.4(b). (See Lemma 4.3
below.)

THEOREM 3.5. Any two fixed-link symmetries are either equal or disjoint. That
is, ifc) c2) for some cell c, then/7) ]72).

Clearly Theorem 3.4(b) is an immediate corollary since any/7c with a fixed
point intersects the identity lc, hence must coincide with it.

When 2; is a fixed-link symmetry, Theorem 3.2 can be sharpened. We state
thtis result as a corollary of that theorem.

COROLIAR 3.3. Let 2; (]7, 1) be a symmetry of F (C, A). For all c C
and all At, c A() if and only if Cc A().

We are now in a position to characterize the symmetries of F2.2.
PROPOSITION 3.4. The data graph Fz.z enjoys precisely two symmetries, namely,

the identity symmetry and the symmetry presented at the beginning of 2.2. (By
Theorem 3.1, the latter must be self-inverse.)

Proof The assertion follows via the following observations.
Observation 1. Every symmetry of F2.2 fixes all links.
By Corollary 3.1, the transformation r is fixed by all symmetries, since it is

the only nontotal element of A. By Theorem 3.3, neither of a or 40 can be the
image of the other under any symmetry since 402 lc

_
a2. We must, therefore,

conclude that all links are fixed by all symmetries.
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Observation 2. Any symmetry of F2.2 either fixes cells (1, 0) and (1, 1), or
interchanges them.

This is obvious by Corollary 3.3 since cells (1, 0) and (1, 1) are the sole
elements ofC A(z) ;moreover, for all A, ( 1, 0) A() ifand only if ( 1, 1 ) A().

Observations 1 and 2 combine with Theorem 2.1 to assure that F2.2 has at
most two symmetries, namely, one that fixes cells (1, 0) and (1, 1), and one that
interchanges them. However, we have exhibited one of each type. The proposition
follows.

We now turn from considering symmetries which fix all links to consider
briefly symmetries which fix some links. Although problems concerning such
fixed points are of great significance, we have regrettably few results to report on
this topic. In 4, we have considerably more to say about fixed points of sym-
metries of addressable data graphs.

THEOREM 3.6. Let E (tic, ill) be a symmetry of F (C, A). For each At,
’we have t precisely when

Proof If fl, {, then, for all c e A({), (c{)flc (cflc)(fl,) (cflc){.
Conversely, if the indicated diagram holds, then, for all c

(cflc)({fl,). Hence, restricted to the set (A({))flc, { fl. However, by Theorem
3.2(a), (A({))flc A({fl,); by the diagram, (k({))flc A({). It follows, therefore,
that { {fl, as was claimed.

One easily verifies that the set of all links which are fixed by a symmetry is
not devoid of structure.

THEOREM 3.7. Let Z (tic, fl) be a symmetry of F (C,A). The set

{ A[fl } is a submonoid ofA, qua monoid of transformations. In contrast,
the set A need not be a semigroup.

Proof The structure of (I) is easily discernible from the fact that fl is a monoid
isomorphism. The lack of structure of A (I) can be observed in any of the "flip"
symmetries of 1"2.4 We showed in Example 2.3 that each of these symmetries
exchanges the transformations p and p; thus, {p,#}

___
At- but pla pp

lc (I).

It is not difficult to glean from our previous results conditions which ensure
the nonemptiness of (I) f3 A.

COROLLARY 3.4. Each of the following conditions on A assures that any
symmetry of F (C, A) fixes some link in A"

A has an odd number of:
(a) elements,
(b) total transformations,
(c) nontotal transformations,
(d) elements of a given order.
Since A is a finite set, the conditions of this corollary are usually easy to check.

Unfortunately though, these conditions may yield no substantive information
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about the set (I). In particular, there exist symmetries of data graphs for which the
set (I) is infinite but is disjoint from A.

cr crd o-d

FIG. 3.2. 1-’3. A two-dimensional quadrant

Example 3.2. We present a two-dimensional quadrant graph, depicted in
Fig. 3.2.

F3. 2 (C, A),
where

(i) C {2’3Ylx, y e N U {0}};
(ii) A {at, at, a,, an}

for each n e C,

nat 2n, the right-move,
na n/2, the left-move,
nau 3n, the up-move,
naa n/3, the down-move.

PROPOSITION 3.5. The data graph F3.2 enjoys precisely two symmetries, namely,
Zx and the symmetry Z (c, l), where11

2x3r/3c 2Y3 for all x, y N U {0},

Intuitively, E flips the quadrant about its diagonal.
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and ar au, (Tu at, (71 ad, O’d (7 Moreover, the latter symmetryfixes
infinitely many links.

Proof Once again we proceed via a chain of observations.
Observation 1. Cell 1 is fixed by all symmetries (Corollary 3.2).
Since cell 1 must be fixed, no nonidentity symmetry of F3. 2 can fix links.

Thus, by Corollary 3.1, either ar and a, are interchanged by a nonidentity sym-
metry, or a and ad are. However, the relations ara auaa lc force one to
conclude that a symmetry must effect both of these interchanges if it effects either.
Since only two behaviors are possible for ill, Theorem 2.1 and Observation 1
indicate that F3. 2 can have at most two symmetries. But we have exhibited two,
so these must be the only ones.

Finally, since auar arab, one notes that (aa)fll aa" aau" (aa)fll"
for all n N (3 {0}.

3.3. Symmetries induced by links. We say a symmetry Z (tic, l)off (C,A)
is link-induced if tic At. We noted in 2.2 and Proposition 3.4 that both symmetries
of F2.2 are link-induced--the identity by tic lc, and the other by tic qg. This
section is devoted to studying such link-induced symmetries.

THEOREM 3.8. Let F (C, A) be a data graph; let A be a bijection, and let

fl:A - A be a monoid isomorphism mapping A onto A. F enjoys the symmetry
52 (, fl) if and only if2 (2fl) for all A.

Proof The proof is obvious by definition.
THEOREM 3.9. If A induces a symmetry 52 (, fl), then is a fixed point

of fl i.e., fl.
Proof For all c C, 12 c2 (c) (c)(fl) since induces the symmetry

(, fl). Thus fl on the set C. However, is surjective, so C C, and the
result follows.

Thus, the fact that the link q of F2.2 is fixed by all symmetries was not due
just to Theorem 3.3.

Let us now turn our attention to link-induced fixed-link symmetries. We
obtain an interesting strengthening of Theorem 3.8.

DEFINITION. (i) Given any monoid M we define, as usual,

center(M) {a MI(Vb 6 M)ab ba}.
(ii) Given any monoid of transformations At, we define

unicenter(A) AI is injective} f-) center(At).

Thus, each e unicenter(A) is one-to-one and commutes with all elements of
At"

LEMMA 3.1. Let F (C, A) be a data graph. Every nonempty 6center(A)
is total and surjective.

Proof (a) Let c C be an arbitrary element of A(). For arbitrary d e C,
there is, by strong-connectivity of F, a transformation r/ A with dr/= c. Since

center(At), we have c dr/ dr/; thus d A() also. Since c, d were arbitrary,
we conclude that is total.

Since induces a symmetry, it must be total.
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(b) Again, let c C be arbitrary; by part (a), c e A(). By strong-connectivity,
there is an r/ A such that (c)r/= c. Since center(A) cr/ cr/ c, whence
c e C. Since c was arbitrary, we conclude that maps C onto C.

THFOREM 3.10. Let F (C,A) be a data graph. The transformation A
induces a fixed-link symmetry of F if and only if unicenter(A).

Proof Assume first that the system (, 1A) is a symmetry of F. By definition,
is one-to-one;moreover, by Theorem 3.8, e center(A). Hence unicenter(A).

Conversely, if unicenter(A), then is one-to-one by definition and is
total and onto by Lemma 3.1. Since is also in center(At), Theorem 3.8 implies
that induces a fixed-link symmetry of F.

Theorem 3.10 cannot be sharpened materially since, in general, unicenter(A)
is a proper subset of center(A). The following example, due to H. R. Strong,
verifies this assertion.

Example 3.3. Consider the following data graph, depicted in Fig. 3.3:

where

(i) C=NU(N {0,1});
(ii) A {a, re, p};

for each n N,

F3. 3 (C, A),

na=n+l,

=J’n- 1 ifn> 1,

(1,0) if n= 1,

np= n;

for each (n, k) e N {0, 1},

<n 1,/>
<n, k>o-

<n, k>rc (n + 1,0>,

if n> 1,

if n= 1,

<n, k>p (n, k + 1 (mod 2)>.

PROPOSITION 3.6. The transformation a of 1"3. 3 (C, A) is in center(At) but
not in unicenter(A).

p p

P P

FIG. 3.3. I3.3 A data graph with a center(At) unicenter(A)
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Proof Since (1, 0)o. (1, 1)o. 1, it is clear that o. unicenter(At). However,
the following calculations show that o. center(At).

(a) For n e N,
(i) no.p =(n+ 1)p n + 1 =(np) + 1 npo.;

(ii) no.n (n + 1)r n, while

J’(n- 1)o n

(1,0)o.-- 1 =n

(b) For (n, k) e N x {0, 1},

(i) (n, k)o.p

(n- 1,k)p (n- 1,k+ l(mod2))

(n, k + 1 (mod 2))o-

(n, k)po. if n> 1,

lp 1 (n,k + 1 (mod 2))0 (n,k)po. if n 1;

(n 1, k)zr (n, 0) (n + 1,0)o.

(ii) (n, k)o.rc (n, k)zro, if n > 1,

lrr (1,0)= (2, 0)o. (n, k)zro, if n 1.

Thus o. co., and o.p po., as was claimed.
The transformation q of F2.e satisfies the conditions of Theorem 3.10 because

F3.2 is a "direct product" of F3.1 and the data graph F3.4, defined by the figure

Thus, in this case the existence of a link-induced, fixed-link symmetry was guaran-
teed by construction. We turn now to a study of conditions which guarantee the
presence of symmetries in data graphs.

3.4. Conditions which induce symmetries. In the preceding subsections, we
have derived a number of principles which delimit the set of symmetries of a data
graph. Most of these principles could be paraphrased, "If F has a symmetry of a
given type, then the following condition must be satisfied." Thus, these results
are more useful in eliminating proposed symmetries than in detecting symmetries.
In contrast, this subsection is devoted to finding conditions which ensure the
presence of symmetries. Each of the ensuing results will, therefore, be of the form,
"If the following condition is satisfied, then F has a symmetry of a given type."

We consider two classes of conditions, those concerning the structure of A
and/or A, and those concerning the way F is constructed.

A. The structure of At. Throughout this section, let us focus on a fixed data
graph F (C, A).

DEFINITION. We say that F is loop-free if no nonidentity e A has a fixed
point; 13 i.e., c c for some c e C implies c.

Thus, F is really free of nontrivial loops.
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The following result, stated here without proof, is an excerpt from Theorem
6.11 of [2]. It yields our first set of conditions which ensure the existence of
symmetries, in this case, fixed-link symmetries.

THEOREM 3.11 (see [2]). The following conditions are equivalent; moreover,
each implies that A is a group:

(a) 1-" is loop-free.
(b) For all , rl A, for all c A() A(r/), r/whenever c cq.
(c) Any two , A are either equal or disjoint.
(d) For all c, d C, F has a fixed-link symmetry (fl, 1) with cfl d.
Other conditions which either imply or are equivalent to these four can be

found in [2]. An interesting condition not presented there is stated in the following
which can also be found in [5.

THEOREM 3.12. If A is abelian--that is, rl q jbr all , q At--then [" is

loop-free. In this case, the symmetries of Theorem 3.11(d) are link-induced.
Proof Say c c for some c C and At. Given arbitrary r/ A with

c A(r/), one finds cr/= (c)rl (c/). Thus fixes cr/also. Since r/was arbitrary,
must fix all cells in cA C. Hence c, so F is loop-free.

Given arbitrary c, d C, let (cd be the (unique by Theorem 3.11(b)) trans-
formation with Ccd d. Since A is a group, cd A must be a bijection. By
Lemma 3.1, each 2 A is total; hence, (e2)c (ec)2 for all e C, 2 A since
A is abelian. Thus, each system Zcd (d, 1) is a fixed-link symmetry of F with

Cd d. By Theorem 2.1, Zd must be the symmetry referred to in Theorem 3.1 l(d).
Since c, d were arbitrary, the result follows.

Theorem 3.12 accounts for the rotational symmetries of 12.3 and F2.4. With
one additional assumption, we can ensure the existence in abelian data graphs
of symmetries which need not fix all links.

DEFINITION. We say A is an atomic group if (i) it is a group of transformations,
and (ii) for each 2 A, 2-1 A.

For example, A is an atomic group for I2.4 but not for 12.3 (although both
are groups by Theorems 3.11 and 3.12).

THEOREM 3.13. Let A be abelian, hence a group;further, assume that A is

atomic. For each cell d C, there is a unique symmetry Zd) (fld), fl) of F with

dfld) d and with 2fl 2-x for all 2 A.
Proof By Theorem 2.1, at most one such symmetry can exist for each d C.

We need, therefore, establish only the existence of g(d). Let d e C be arbitrary.
For each cell e C, define

efld) d 1,

where {e e At is such that d{e e. We first verify that fid) is a bijection.
1. fld) is a total function.
This is obvious, since A is a group of transformations.
2. fla)is one-to-one.
efld) filed)implies d{-1 d{f so that {e {I’ whence e f.
3. fl)is onto.

1, In [2] condition (b) is termed universal-rootedness (cf. 4)" condition (c) is called relational
homogeneity" condition (d) is designated uniform transposability.
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Since A is a group, the strong-connectivity of F guarantees that

C {d{-ll{ eA}.
Finally"
4. The system 2() is a symmetry of F.
By Lemma 3.1, each 2 e A is total; therefore, for all e e C, 2 e A,

(e2)fld) d(e,) d,- ’2 (d- 1)/- (efld))(2fll)"
The theorem follows from parts 1-4. (Note the uses of commutativity.)
The symmetries of Theorem 3.13 fix all links only when each 2 A is self-

inverse. In this case, each Z(d) Ei.
Theorem 3.13 accounts for the "flip" symmetries of F2.4.

B. Construction of F. It is probably safe to guess that a rather small per-
centage of the data graphs which arise "naturally" in applications are abelian
or even loop-free. However, this percentage increases appreciably if one broadens
his view to include data graphs, such as F2. 2, which are "constructed" using loop-
free graphs. We now discuss symmetries which arise from the construction of data
graphs. Although we focus on only one method of construction, other methods
will readily occur to the reader, and results analogous to those presented here will
be obtainable. (See, for example, [3, 5].)

DEFINITION. Let F (C1, A1) and F2 (C2, A2) be data graphs. The direct
product of F1 and F2 is the data graph

F1 F2 (C, A),
where

(i) C C x C2;
(ii) A {2’12 A1} U {2"12 e Aa}

for (c,, C2) ff C,

(cl, c2)2’ (c12 c2) for all 2’ A,
(C, C2)2" (Cx, Ca2) for all 2" A.

The reader will easily verify that F3.2 is isomorphic15 to F3. x F3., and
that Fa. 2 is isomorphic to F3.a x F3.4.

We present two results about symmetries of direct products. The first indicates
how symmetries can arise from a construction; the second indicates how sym-
metries can be preserved by a construction.

THEOREM 3.14. Let F (C, A) be a data graph. The data graph

F x F (C # A #)

where C # C x C and A# {2’, 2"12 e A}, enjoys the symmetry E (c, l)
defined by

(c, d) (d, c) for all (c, d) C #

/’[l t", Ittfll 2’ for all 2 A.

15 Cell (m, n) is encoded as 2m-13"-1’ a’ a,, n’ tTl, tY" (Tu, ff" (7d.
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The proof is obvious, and is omitted. Theorem 3.14 accounts for the non-
identity symmetry of F3. 2

THEOREM 3.15. Let F (Cx,A1) and F2 --(C2,A2) be data graphs. If F
enjoys the symmetry Z") (/i), ]31i)), then F1 F2 enjoys the symmetry (c, l)
defined by

{c, d)c {c1), d2)) for all {c, d) C1 C2,

for all 2 A 1,

for all 2 A2

Again the straightforward proof is omitted. Theorem 3:15, in conjunction
with Theorem 3.12, accounts for the nonidentity symmetry of F2.2.

4. Symmetries in addressable data graphs. In this section we study the sym-
metries of data graphs which enjoy a strong type of uniformity, termed address-
ability. The presence of this uniformity affords us strengthened versions of a
number of the results from 3. In an analogous vein, knowledge about the sym-
metries enjoyed by an addressable data graph yields further information about
the addressing structure of the graph. Thus, the results in this section supplement
the study in [2], [3] as well as that in the preceding section.

4.1. Addressable data graphs. We review a number of the basic notions and
results from [2], [3] which are pertinent to the sequel. Fix on a data graph F (C, A).

DEFINITION. An addressing scheme for the data graph F is a total function

a.C- A
such that

(i) there is a designated base cell Co C for which Coa lc;
(ii) for all A, for all c A(2),

(C/],)a (Ca)/,. 16

We say F is addressable if it admits an addressing scheme.
LEMMA 4.1. (a) Ifa exists, it is one-to-one.

(b) If ca (da)2 for some c, d C and 2 A, then c d2.
(c) Ca is the submonoid ofA comprising all and only total functions.
(d) For each Ca there is an q A with rl lc.
DErr<n:o. A cell Co C is a root of F if, for all , r/ A which are defined

at Co, r/whenever Co Cot/.
LEMMA 4.2. (a) Every transformation defined at a root is one-to-one and total.
(b) Let co be a root of F. Let be the maximal submonoid of A which is a

group. Then, the set of all roots of F is dually characterized by the sets Col
{CoCOlco f} and {Co-11 m is total}.

DEFIn:IOr<. (i)A self-insertion of F is a total function O’C C such that,
for all/l A, 20 02.

(ii) F is uniformly self-insertable if there is a cell Co e C such that, for every
cell c C, there is a self-insertion Oc of F with CoOc c. We say Co is relocatable.

16 Thus the address of cR is obtained as a product in the monoid At.
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LEMMA 4.3. Any two self-insertions off are either equal or disjoint. 17

The following theorem relates the three notions just defined.
THEOREM 4.1. The following assertions about a data graph V are equivalent:
(a) g’ is addressable.
(b) F is rooted.
(c) F is uniformly self-insertable.

Moreover, the base cell of every addressing scheme is a root of F; every root of F
is relocatable every relocatable cell is the base cell of an addressing scheme.

It is not hard to verify (cf. [2], 3]) that F2.1,1-’3.1 and 1-’3. 2 each has a unique
root; 12.2 and F3.4 each has two roots; 1-’2. 3 and I2.4 have three roots apiece;
and 1-’3. 3 has none. A major result in [2] is the proof of the coextension of address-
ability and realizability by relative addressing.

4.2. Symmetries and roots. We establish some basic connections among the
uniformities we have introduced. The reader should apply these results to the
rooted data graphs just mentioned.

Our first result strengthens Corollary 3.2.
THEOREM 4.2. The image of a root under any symmetry is again a root.

Proof Let Co be a root, and Z (tic, fit) a symmetry of F (C, A).
Since Co is a root, it is in the domain of only total transformations (Lemma

4.2(a)); the same must, therefore, be true of cell Coflc (Corollary 3.2). The result
is now immediate by the strong-connectivity of F and by the second part of Lemma
4.2(b).

COROLLARY 4.1. Every symmetry of a singly-rooted data graph fixes the root
cell.

These results yield immediately that cells 1 of F2.1, F3.1 and F3. 2 are fixed
by all symmetries. They further yield that cells (1, 0) and (1, 1) of F2. 2 are either
fixed or interchanged by all symmetries. (The roots of these four data graphs are
readily identifiable using techniques from [2], 3].)

COROLLARY 4.2. If an addressable data graph F enjoys a nonidentity link-
induced symmetry, then F is multiply-rooted.

Proof Say F (C, A) has root Co and nonidentity link-induced symmetry
E (tic, fit). By Theorem 4.2, Coflc must also be a root of F. Moreover, since
tic At, Coflc Co only when tic lc; however, by Theorem 3.4, only the identity
symmetry fixes all cells. Thus our assumption that E :/: Z1 forces us to conclude
that Coflc is a root distinct from Co.

We can establish a strong converse to Theorem 4.2. Not only are any two
roots of a data graph "connected" by a symmetry, they are connected by a fixed-
link symmetry.

THEOREM 4.3. Given any pair of roots of F (C, A), say c and c2, there is a
(unique) fixed-link symmetry Z (tic, 1) of F satisfying cfl c2

Proof The proof technique mirrors that of Theorem 4.1 in 3]. Let c be
the base cell of the addressing scheme . Define the map fl:C - C by:

dfl c2(d for all d C.

17 Clearly any fixed-link symmetry ofF is a self-insertion. Hence, Theorem 3.5 is actually a corollary
of Lemma 4.3.
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We claim that (fl, 1A is the desired symmetry. This claim is established by the
following chain of observations.

Observation 1. is a total function.
Functionality follows from the functionality of each At. Totality is

immediate by Lemma 4.1(c).
Observation 2. c1 c2.
Since has cl as base cell, CI C2(CI(X C21C C2
Observation 3. fl is one-to-one.

dfl eft implies c2(d) c2(e), by definition; hence d e, since c is a
root of F; hence d e, since is one-to-one (Lemma 4.1(a)).

Observation 4. fl is onto.
Let d C be arbitrary. By strong-connectivity of F, there is a A with

cz d. By Lemma 4.2(a) is total;hence C, by Lemma 4.1(c). Thus e
for some e C, and for this e, eft c2(e d.

Observation 5. (fl, 1A is a symmetry.
Let 2 A be arbitrary. If d A(2), then

(d2)fl c2((d2)a (c(da))2 (dfl)2.
Conversely, if (dfl)2 Cfl C, then for some e C,

(dfl)2 c2(da)2 c2(ea)= eft.
Hence, (de)2 ea since c2 is a root of F. By Lemma 4.1(b), d2 e, so d e A(2).

The theorem follows from these observations and Theorem 2.1.
The preceding results yield an unexpected symmetry-based test for multiple

roots. This exemplifies how knowledge of one type of uniformity can yield in-
formation about another.

COROLLARY 4.3. An addressable data graph is multiply-rooted if and only if
it enjoys a nonidentity fixed-link symmetry.

Proof If F is multiply-rooted, Theorem 4.3 ensures the existence of such a
symmetry.

Conversely, if F is singly-rooted, Corollary 4.1 asserts that this root must be
fixed by all symmetries. By Theorem 2.1, therefore, the identity symmetry is the
only fixed-link symmetry of F.

Thus the multiple-rootedness of, say, I"2. 2 can be inferred from knowledge
of its rootedness and of its symmetries.

It is quite easy to show that the symmetries of Theorem 4.3 are not the unique
ones which exchange a pair of root cells. For example, consider the data graph
F2.1 x F3.4, obtained as a direct product of our tree and our two-cell data graph.
This data graph clearly possesses two distinct symmetries which interchange its
two roots (1, 0) and (1, 1). On the one hand, it enjoys the fixed-link symmetry of
Theorem 4.3. On the other hand it enjoys a symmetry which interchanges ar and al,
and which uniformly has cell (2k+i,/) as the image of cell (2k+ -(i+ l), /+
(mod 2)). The latter symmetry "combines" the nonidentity symmetries of F2.1 and
F3.4. (Cf. Theorem 3.15.)

4.3. Symmetries, addressing schemes and self-insertions. Our first results
relating symmetries and addressing schemes are actually corollaries of previously
obtained results.
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COROLLARY 4.4. The sets Ca and A Ca are invariant under all symmetries.
That is, (C)fll Ca, (A CoOfll A Ca for any symmetry Z (tic, fl).

Proof. The proof is by Corollary 3.2 and Lemma 4.1(c).
COROLLARY 4.5. Every fixed-link symmetry of a rooted data graph is induced by

an addressing scheme. That is, given F (C,A) with addressing scheme and
symmetry E (tic, 1), there is a cell e C such that dflc e(d) for all d C.

Proof If Co is the base cell of , then let e Coflc. By Theorem 4.2 and the
proof of Theorem 4.3, the system (fl, 1At) is a symmetry of F, where d e(d) for
all d C. By Theorem 2.1, therefore, this symmetry must coincide with E.

We now establish a result which demonstrates a very intimate relationship
between the set of symmetries of a data graph and the set of addressing schemes for
the graph.

DEFINITION. Let F (C, A) have addressing schemes and 2 (not necessarily
distinct). An (el, 2)-system is a pair of bijections (/31, f12) such that

(i) fll:CC;
(ii) 2 :At "+ At is a monoid isomorphism which maps A onto A;

(iii) 012 fl12; that is,

THEOREM 4.4. Let F (C, A) be a data graph with (not necessarily distinct)
addressing schemes and 2. Say x has base cell c, and o2 has base cell c2. The
following assertions obtain:

(a) If Z (tic, ill) is a symmetry of F, and if cflc ca, then E is an (, a2)-
system.

(b) Any ( 2)-system (fl f12) is a symmetry of F for which cfl c2.
Proof. (a) Let c C be arbitrary. On the one hand, we find

since 2 is the base cell of o2 On the other hand,

C (CI(COI)) --(Clc)((COl)l)= C2((COI)I

since c is the base cell of 1, and cflc 2. By Theorem 4.1, 2 is a root of F;
hence (Cflc)2 (ca)fll. Since c was arbitrary, we conclude that
system.

(b) To establish the converse, we need merely demonstrate that 2fl flx(/fl2)
for each 2 A, and that clfla c2.

To these ends, let 2 A and c A(2) be arbitrary. We find the following chain of
equations"

(C/)/l C2(((C/)/ 1)02)

C2(((C)0 1)/2)

C2(((C0 1)/)2)

C2((C0 1)2)(/2)

(since c2 is the base cell of z)

(since f12 flxz)

(since is an addressing scheme)

(since ]2 is a monoid isomorphism)
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c2((cfl,)az)(2fl2) (since a,fl2 flla2)

(cfll)(2fl2) (since c2 is the base cell of a2).

Moreover, reversing these steps shows that c A(2) whenever cfll A().fl2). Since 2
and c were arbitrary, we conclude that the system (ill, f12) is a symmetry of F.
(Actually, reversing the steps requires Lemma 4.1(b).)

Finally, we note that

Cl C2((Clfll)a2)

c((c,,)/)

c2((lc)fl2)

2

(since c2 is the base cell of 2)

(since

(since

(since 2 is a monoid isomorphism).

This completes our proof.
COROLLARY 4.6. If the symmetry Y (tic, fl) of F (C, A) fixes the root Co,

then flea ofl, where co is the base cell of addressing scheme .
Corollary 4.6 is often useful in computing one of the functions tic or fl,, when

the other is known. In particular, when a symmetry is presented as in Theorem 2.1,
this corollary is a very useful computing aid.

COROLLARY 4.7. IfF (C, A) is singly-rooted and, hence, has a unique address-
ing scheme , then any symmetry E (tic, fl) off satisfies the equation

We remarked that Theorem 4.4 and its corollaries can be useful in computing
symmetries of data graphs which are known to be addressable. Not surprisingly,
known symmetries can often be helpful in detecting addressability by facilitating
the "computation" of self-insertions.

Let c be a root of F (C, A). By Theorem 4.1, for each cell d C, there is a
self-insertion of F which maps c to d. Let us uniformly denote this self-insertion by
0.

THEOREM 4.5. Let F (C, A) have root c and symmetry Z (tic, fl). For all
deC,

Proof Say c is the base cell of addressing scheme a l. By Theorem 4.2, cell
is also a root of F; say that it is the base cell of a2.

Let d C be arbitrary. For each cell e e C, we have, 18 using Theorem 4.4,

(eOa)flc (d(ezl))flc (dflc)((eol)fl,)= (dflc)((eflc)O2)=

Since d, e were arbitrary, the theorem follows.
Since tic is a bijection, the equation of Theorem 4.5 can be rewritten as

Oc
which may be a more useful form. If, moreover, fixes c, this last equation simpli-
fies to 0 fl Oflc. Other related equations are readily derivable by the reader.

These equations draw on the proof of Theorem 4.1 from [3]" cf. Corollary 4.5.
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4.4. Fixed points of symmetries. We were able to say very little in 3 about
cells which are fixed by symmetries. When we restrict attention to addressable
data graphs, we can say a bit more.

THEORWM 4.6. Let F (C, A) have root Co and associated addressing scheme a.
Let Y (c, fit) be a symmetry of F. Z, fixes the cell c C if and only if (ca’) ca,
where a’ is the addressing scheme of F with base cell Coc.

Proof. The proof is immediate by Theorem 4.4.
COrOLtA,Y 4.8. Let E (c, l) fix the root Co of F (C, A). Then, for all

n N LI {0}, Z must fix the cells Co(Ca)" whenever it fixes the cell c.
An immediate consequence of Corollary 4.8 is that, since cells 1 and 6 of the

quadrant F3.a are fixed by all symmetries, so also must be all cells 2"3" on the diagon-
al.

Thus, for singly-rooted data graphs, the fixing of cells by symmetries is a
concomitant of the fixing of total link-transformations. Moreover, the fixing of a
single nonroot cell induces the fixing of an entire family of cells.

4.5. Symmetries induced by links. The final topic we consider is how the
results of 3.3 can be sharpened in the presence of addressability.

LZMMA 4.4. Let F (C, A) be an addressable data graph. Then center(At)
unicenter(A). Moreover, center(At) is a subgroup of the group of Lemma

4.2.19
Proof. By Lemma 3.1, every center(At) is total; hence, center(At)

___
Ca. By

Lemma 4.2 and Theorem 4.1, every Ca is one-to-one. We conclude that center(At)
unicenter(A). To complete the proof, recall that Lemma 4.1(d) asserts that, for

each Ca there is an r/ A with r/ 1 c. In particular, if center(At)
___

Ca,
r/ r/ lc; it clearly follows that r/ -1@ Ca also, so , r/ . We need,
therefore, show only that r/ center(At). To this end, let " A be arbitrary. We
know that , so that " r/, and finally fir/= r/. Since " was arbitrary, we
conclude that r/ center(At), and the lemma follows.

The following result is now immediate from Lemma 4.4 and Theorem 3.10.
THEOREM 4.7. Let F (C, A) be an addressable data graph. The transformation
A induces a fixed-link symmetry off if and only i]" center(At)

Appendix. Realizations by relative addressing. In order to indicate some of
the motivation for the notion of addressability, we present, excerpted from 2], the
notions of a realization of a data graph and of a realization by relative addressing.

A realization of a data graph in a random access memory can be viewed in the
following simple manner. Let A denote the address space of the memory, i.e., the
set of addresses. A realization 0f a data graph (C, A) in A comprises (a) an assign-
ment of a unique address (or memory location) to each cell c C, and (b) a mechan-
ism (function) for determining, from the address a A of a cell c C and a trans-
formation defined on c, the address of cell c. Our informal notion of realization
is further simplified if the mechanism for obtaining the address ofc is independent
of c (hence, of the address of c). Since every data graph admits such a realization
(Proposition A), this type of realization is the starting point of our development.

19 Recall that f is the maximal submonoid of A which is a group.
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DEFINITION. Let F (C, A) be a data graph, and let A be a set with # C =< # A.
A realization of F in A is a pair of mappings (r, p) where"

(i) r maps C one-to-one into A;
(ii) p, which maps A one-to-one into the set of partial transformations of A,

is a monoid homomorphism;
(iii) for all 2 A, 2r r(2p) as functions on C.
Note. If (r, p) realizes F (C, A), then (Cr, Ap) is isomorphic to F. This

assures that structural properties of a realization depend only on structural
properties of the data graph realized.

PROPOSITION A. A data graph F (C, A) is realizable in any set A with # A
>=#C.

Perhaps the most familiar technique for implementing graphs such as arrays
and trees is the method of relative addressing. Informally, this technique amounts
to specifying a base address and representing the addresses of the various cells in the
graph as displacements from this base address. We present an example of this
technique using the binary tree F2.1 depicted in Fig. 2.1. The "specification" of this
data graph presented in 2, was, strictly speaking, a realization of the graph in the
set N of natural numbers. Employing Church’s well-known lambda notation for
functions, the mapping p was specified to be"

rrp 2n[2n], ap 2n[2n + 1], rp 2n[n/2j].

We now show that this realization (r is implicit from the figure) can be viewed
as a realization of the graph by relative addressing.

Base address. The base address is 1.
Displacements. For any cell c C, let c o01 con be the (unique) sequence of

err’s and rl’S which describes a path from the root of the tree to c. Note that c is null
if c is the root. For example, if cr 5, then c arab. Now, for each such c, define
I([ as follows:

(i) If c is null, then Icl 0.
(ii) For any {r, O’l}*,

I’al 211 + 1,

The displacement of c e C is, then, I1. One easily verifies that, for each c e C,

cr= 1 + IWI.

Thus, the address of a cell can be uniquely expressed as the pair (1, ) or, more
generally, as a pair (base address, displacement).

We proceed to the general definition.
DEFINITION. Let (r, p) be a realization ofa data graph F (C, A) in a set A.We

say (r, p) is a realization by relative addressing if the following condition obtains:
There is an ao e Crand a bijection(= one-to-one onto map) 6 C --+ I-I {rte kgplaorc
Cr} such that, for all c C, cr ao(c6). We call ao the base address and 6 the

displacement function of (r,
Theorem 4.1 exhibits three conditions on a data graph, which are equivalent

to the realizability of the graph by relative addressing.
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ON CLASSES OF PROGRAM SCHEMATA*
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Abstract. We define the following classes of program schemata:
P class of schemes using a finite number of simple variables;

PA class of schemes using simple and subscripted variables (arrays);
Pge class of schemes in PA, with the addition of an equality test on subscript values;
PR class of schemes allowing recursive functions;

PL class of schemes allowing labels as values;
PM class of schemes allowing a finite number of special markers as values
Ppds class of schemes using pushdown stores.

With these, we can also discuss, for example, PAM, the class of schemes allowing arrays, and special
markers as values and PAL, the class of schemes allowing arrays, and labels as values.

We argue that PA, PR, and PL faithfully represent mechanisms of subscripting, recursion, and labels
as values, that are present in many "real" programming languages.

We show that

P< PR <PA=PAu----PpdsU----PAe =EF,

where EF is Strong’s class of effective functionals, assuming total functions and predicates. The
inclusions P < PR < PA and equivalences PAL PAM PpdsM PAe are effective. For example, given
a program scheme in PAU we can construct an equivalent one in PAL" However, we show that for any
scheme in PAU an equivalent PA scheme exists, but also prove it cannot (in general) be constructed!

We conjecture that PA, PAL, and equivalent classes are indeed "universal."
The above results assume that the uninterpreted functions and predicates are total. We discuss

the problems which arise when they are partial. We define the class of multischemes and outline the
relationship between the class PAe, multischemes, and Strong’s nondeterministic and deterministic
effective functionals.
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1. Introduction. A fundamental result in logic and computing theory is that
certain seemingly different computing systems (e.g., Turing machines, programs
and recursive functions) are equivalent in their ability to compute functions.
They are all universal because they allow computation of exactly the computable
functions.

Paterson and Hewitt [5] and Strong [7] discovered that structural differences
between these systems emerge at the level of schemata, i.e., on the task ofcomputing
functionals.

In [5] the authors exhibit a hierarchy of schemata: program schemata (P)
contained in recursion schemata (PR) contained in parallel schemata (Pp). These
results indicate that the mechanism of function evaluation in recursion is "more
powerful than" the mechanism in machines with a finite number of registers.
Paterson and Hewitt also raise the question of whether there is a well-defined
notion of universal computing scheme.

We are interested in discovering more exactly how different classes ofschemata
relate to each other, and in proposing a natural model of a computing scheme which
is perhaps universal.

The discovery of universal computing schemata, if they exist, must proceed
analogously to the discovery of universal computing systems. That is, a number of
diverse candidates are proposed and are found to be equivalent. To start the study
we need candidates. We propose our array schemata with special markers as one
candidate. In [4] Paterson proposes program schemata with pushdown stores
and special markers, and Strong I7] proposes his "effective functionals." We
relate a version of our array program schemata to these other classes.

Our "proofs" of equivalence or inclusion of one class of schemata in another
generally consist of showing, given a scheme S in one class, how to construct
another equivalent scheme S’ in the second class. The constructions are usually
fairly simple and obvious. We do not give formal proofs of equivalence.

The paper is arranged as follows. In 2 we discuss the class P of program
schemata and define what we mean by "equivalence" of two schemes. In 3 we
define the class PR of program schemata, and relate them to the usual recursive
functions used in mathematics. We describe macro expansion, which is the replace-
ment of a function call by the corresponding function body, to yield an equivalent
scheme.

Section 4 defines several other classes of schemes: PA, PAe, PM, PL, P_ and
Ppds. Section 5 is devoted to a discussion oftwo important concepts on which many
of the results depend: locators and simulators. In 6 we show that PR < PA,
while in 7 we include some results concerning Ppds and PpdsM"

In 8 and 9 we show that PAM, PAL, PpdsM and PAe are all equivalent, and
finally that PA PAM. The equivalence of Strong’s [7] effective functionals
(assuming total functions and predicates) with PAe is outlined in 10.

Thus far, all the results concern schemes with total functions and predicates.
In 11 we discuss schemes with partial functions and predicates and arrive at a
suitable class of schemes, called multischemes, to handle them. We assert the
equivalence of the class of multischemes and effective functionals and attempt
to show the relation between PA, multischemes, nondeterministic effective
functionals, and deterministic effective functionals.
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2. Basic notions of schemes, the concept of equivalence.
(2.1) DEFINITION. A program scheme in the set P of program schemata is a

sentence of the grammar G[(program)] given below, where
(i) v, w denote simple variables from the class V { V1, V2, }

(ii) h, f denote operations, or basic (total) functions from the class F
F2, }. Each Fi has rank (number of arguments) RFi;

(iii) p, q denote (total) predicates from the class P {P1, Pe, }. Each Pi
has rank (number of arguments) RPi;

(iv) denotes a label from the class L {L L, }.
The grammar G I(program)l contains the rules

(program) (v{, v})" (body
(body) (S-list); /:] HALT(v)

(S-list) [1:] (S) {; [1:] (S)}
(S) "empty"

v --f(vl,"" Vgf)

[IF p(vi,... l)Rp THEN [1:] (S) ELSE [1:]

[HALT(v)

IGOTO
IBEGIN (S-list) END

The list of variables just before the (body) indicates the simple variables
whose values will be the program input. They must be different. In addition, any
label used in a GOTO statement must also label a statement, as I[ :] (S). Each
label can be used only once to label a statement.

(2.2) Example. The following is a program scheme"

(Vl, V2)" V1 *-- FI(V1, V2);

LI’IF PI(V1)

THEN BEGIN V2 F3(V2); V1 - F2(V1); GOTO L1 END

ELSE HALT(V2);

HALT(V2)

We shall from time to time use programming constructions which are not
strictly allowed, but which could obviously be transformed into correct construc-
tions. We use the constructions in order to make "algorithms" clearer. Typical
examples are

IF P(X) and Q(X) THEN X F(X)

We use BNF notation, with the following additional notations" {x} indicates 0, 1, 2 or more
occurrences of x. Ix[ means 0 or occurrences of x.
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which is equivalent to

and

which is equivalent to

IF P(X)

THEN IF Q(X) THEN X - F(X)

ELSE

ELSE

WHILE P(X) DO X ,-- F(X)

L: IF P(X) THEN

BEGIN X F(X); GOTO L END

The rest of this section is concerned with giving our idea of what a program
scheme is. We also describe several other restrictions we place on schemes and their
meanings.

Paterson [4] introduces schemata as flow charts. We have decided to define
them formally in terms of ALGOL-like program statements solely in order to reduce
the number of diagrams necessary in the paper. We shall, however, resort to
flow charts from time to time for purposes of clarity. A flow chart equivalent to
the program scheme in (2.2) is shown in Fig. 1.

HALT(V2)

HALT(V2)

Vl - FI(V1,

PI(

IV2 F3(V2)---- V1 F2(V1)t--

FIG.

Program schemes can express algorithms for computing over any domain
D (e.g., D N {0, 1, 2,... }, or D {set of all binary trees}). The operations
over D are f(-):DRI--, D, while the predicates are p(.):Dm’-, {T, F}. There-
fore, parameters necessary in specifying a concrete programming language are
the domain D, a subset of the operators (D) {f(. ): DRI --, D}, and a subset
of the predicates (D) {p(. ): DRp T, F} }.

Suppose we give an interpretation to the domain D, the predicates Pi and the
functions Fi that can be used in a scheme. We then have a programming language,
and any program scheme is a program in that language.
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For instance, selecting D , fl(x)= x + 1,/2(x) x 1, and P1 to be
the predicate -, gives us the language G3 which is universal for . That is, it
expresses algorithms for all computable functions over .

To execute a program, the input values are put into the variables v {, v} listed
at the beginning of the (program), and the (body) of the program is executed.
The way each of the statement types is executed should be obvious to any program-
mer, and we shall not discuss it further. We often use the phrase "execute a scheme"
as an abbreviation for "execute a scheme under an interpretation of D, and, with input values .-.."

In summary, any particular program scheme can be interpreted as a map
of n operators, n2 predicates, and n3 input values into D:

,(D)" x (D)" Dn- D.

Such maps are called functionals over D. The program scheme of (2.2) computes
a functional

(D) (D) DZ- D.

(2.3) DEFINITION. [(P, D) is the set of all functionals over D computable by
program schemes in P.

Abstracting programs into program schemes may lead to a better under-
standing of conventional programming language features, because it allows us
to separate completely the values being computed from the data structures and
control mechanisms used in the program. For example, we can define schemes
using arrays of subscripted variables, where the subscripting mechanism is com-
pletely divorced from the values computed. No subscript value can be used as an
argument to a basic function and no basic value can be used as a subscript value.

This allows us to compare the class PA of program schemes using arrays with
the class PR of programs allowing recursive procedures but no arrays, and we get
the result that PA is the more powerful class!

All our schemes yield only a single output value, the value of the variable v
in the HALT(v) statement which halts the execution. This is not a real restriction;
our only purpose in limiting the schemes this way is to arrive at a clear and concise
discussion.

All basic predicates and functions are assumed to be total, that is, they yield
a valid value in D for any set of input arguments whose values are in D. Other
people working in the area have allowed partial functions and predicates. Some
of our work carries over easily when using partial functions and predicates; other
parts do not. Also no form of parallelism can be simulated without parallelism
if basic functions or predicates are partial.

In any case, we feel that totality of functions and predicates is a more useful
and desirable feature. In any "real" programming system, these basic functions
should be total. They may yield an undefined value as a result, but this is better
than a system function looping indefinitely because of an input error.

Furthermore, if one intends to characterize the behavior of schemata in
which the function inputs are subroutines (hence possibly partial), this can be
realistically done by allowing schemata as arguments to other schemata.
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Our main purpose in this paper is to compare several different classes of
program schemata and show they are equivalent, or not equivalent. Our equiva-
lence concept should include schemes which execute "incorrectly" under some
interpretation. For example, the scheme

(V)" HALT(W)

will always execute incorrectly, because the output variable W has never been
assigned a value! Nevertheless, we must take such schemes into account.

Let us use the convention that each domain D includes an arbitrary value
which we shall call the undefined value. In any scheme, before execution (under
some interpretation), each variable is initialized to this value f. We can also
assume the simple variable OMEGA is never assigned a value during execution,
and thus always contains the value

We shall define program schemata using labels as values, special markers,
and so on. In order to separate the different features as much as possible, we.do
not want to allow these labels or markers to be in the domain D. For example, if
one class of schemata allows v f(m, w) where m is a special marker andfis a basic
function, then clearly we cannot have an equivalent scheme in a class which does
not allow markers.

Our convention then is:
(2.4) If a value not in the domain D is used as an argument to a basic predicate,
function, or HALT operation, then the value f2 is used in its place.
Again, this convention is not essential to the theory (the matter could be

handled as it is in "real programming languages"), but it leads to cleaner results.
(2.5) DEFINITION. Two program schemes, S1, S2, with inputs x 1,...,

f, "’", fn2, P, "", P,3 and output y are (input-output) equivalent over D if and
only if they compute the same functional over D, i.e., Sx, ..., x,, ,fl, ..., f,2,
P,’", P,3] S2[x,..., x,, f, ...,f,, p,..., P,3] for all xl,..., x, in O.
Two schemes are equivalent if and only if they are equivalent over all D.

(2.6) DEFINITION. Let P and P2 be two classes of program schemes. We say
that P1 is less powerful than P2, written P1 < P2, if

(1) for every scheme S in P there exists an equivalent scheme in P2;
(2) there exists a scheme $2 in P2 with no equivalent scheme in P.

Equivalently, P < P2 if []z(P1, D) = []z(P2, D) for all D. P has the same power as P2,
written P P2, if :(P, D) :(P2, D) for all D. We write P1 < P2 if either P1 < P2
or P1 P2.

3. Recursive program schemes and macro expansion. Recursive definition is
one of the basic ways of specifying functions in mathematics. The underlying
structure of recursive definition can be specified at the scheme level through the
notion of a recursive scheme.

(3.1) DEFINITION. A (recursive) definition ofafunctionfof rank Rfhas the form
f(x, x2, XRS) e0, where e0 is an expression. An expression e (or el) has one
of the three forms"

(i) xi (the ith parameter; < i<= Rf);
(ii) h(el, e2,..., eRh), where h is a function (it may be f);

(iii) IF p(e, e2, eRp THEN ei ELSE ej, where p is a (total) predicate.
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(3.2) DEFINITION. A recursive scheme consists of a finite set of definitions of
functions fl, f2, "’", f,, together with an initial call fi(vl,..., VRy,) of one of the
functions f/, using as arguments the values v,..., VRyi.

The class of recursive schemes is denoted by R. Note that a recursive scheme
is a map from

,-(D)" @(D)"z D"- D

for some n,/12, and n3. Thus, both recursive and program schemes compute over
the same set of domains. It is therefore reasonable to ask whether they compute
the same class of functionals over all domains D. Precisely, is :(R, D) :(P, D)
for all D? In 4] Paterson and Hewitt show the following result.

(3.3) THEOREM. There exists a D such that f(P, D) :(R, D).
In fact, they show the result for any infinite domain D by showing it for the

free domain D- {Fi, Pili N}. This result makes it clear that the evaluation
mechanism for recursion is more "powerful" than that of programs using only
simple variables. In other words, programming languages using a finite number of
variables but allowing recursion are more powerful than those without recursion.

Since :(P, D) is a subset of ]:(R, D), it is convenient to introduce the notion
of the class of recursive program schemes PR, in a way which yields :(R, D)

[F(PR, D).
(3.4) DEFINITION. A recursive program scheme in PR is a sentence of the

grammar G(recursive program] given below (it uses the rules for (program,
etc. given in (2.1)).

(recursive program)" (program) {(function def)}
(function def) f(vl VRf)" (body)

Thus, a recursive program scheme consists of a program plus a sequence of
function definitions. Those functions which are defined are called recursive
functions, as opposed to the basic functions not defined. "Execution" is as before,
except that when a recursive function fis called, the following happens:

(1) The values of the arguments of the call are assigned to the corresponding
variables (formal parameters) Vl,..’, VR, and the other variables used in the
function are set to , the undefined value.

(2) The function’s (body is executed until a statement HALT(v) is executed.
The value of the variable v is then the value of the function, and execution resumes
just after the point of call.
The variables and labels used in a function definition are assumed to be disjoint
from those in the (program and other function definitions. They are also assumed
to be different for each invocation of the function. In programming terminology,
they are local variables and labels. The value of v in the HALT(v) operation which
ends execution of a function need not be in D. In other words (2.4) does not hold
for HALTs executed within a function.

(3.5) Example.

(V, W)" V - FI(V, W); W - F2(V, W); HALT(V)

F2(X, Y)" L" IF P(X)THEN
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BEGIN X - F3(X); Y +-- F2(X, Y); GOTO L

END

ELSE HALT(Y);

HALT(Y)

The equivalence of PR and R was first proved by McCarthy [3 (using different
notation and different definitions). Let us show how to translate a recursive scheme
into a recursive program scheme (with an intuitively equivalent meaning).

(3.6) Transformation of St R to S’ PR" The initial call f(vl, "", VRy) is
transformed into the (program)

(V1, VRf):OUTPUT - f(V,,..., VRy); HALT (OUTPUT)

Each function definition for a functionf is translated into

fi(V, Ve,..., VRy,); V,-- e0 HALT(V)

Within eo, references to the arguments x are replaced by the variable names V.
We now iterate the following two steps on each function definition until neither is
applicable:

(a) if there is an assignment v - f(e, eRy) where at least one e is not a
variable, then generate new variables V1, "", VRf and replace the assignment by

BEGIN V el; VRy -- eRy;-- f(V,, "", VRy)
END

(b) if there exists an assignment

v IFp(e,..., enp) THEN e ELSE e
then generate new variables V,..., VRp and replace it by

BEGIN V - el ;... VRp ’-- eRp;

IF p(V,’", VRp THEN v - e ELSE - e
END

A particular function call in a "real" program can alternatively be thought of
as a macro call. By this we mean that, before the program is ever executed, the
function call is replaced by the (body) of the function definition, with suitable
changes of variable names and suitable initialization of parameter and result
variables, to yield a new equivalent program. During execution, the function
evaluation is then performed "in-line." We can perform the same process with
schemata.

(3.7) Macro expansion. Given a program scheme in PR with a function call
v f(wl,’", WRy), wherefis defined by a (function def), we expand the call to
yield a new, equivalent scheme in PR, as follows:

(a) Makea copy ofthe (body) ofthe (function def) off Let the local variables
and labels used be V1,..., V,, L1,"., Lm. Create entirely new variables and
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labels V’, ..., V,*, L,..., Lm*, and change each reference to V (Lj) within the
copy of the (body) to V’ (Lj).

(b) Create a new label L. Replace each statement HALT(V’) within the copy
of the (body) by

BEGIN v V’; GOTO L END

(remember, the function call is v ,-- f(wl,.’.,
(c) Suppose the formal parameters of the function f were V1, V2, "",

Replace the call v ,-- f(w,..., wry) by the statement

BEGIN V’ - w ;... V]f - wRf V]f + OMEGA;... V*, OMEGA;

(copy of (body) resulting from b);

L:

END

(3.8) Example. Let S be

(w): v+ w;
V F(V, W);

HALT(V)

F(X, Y): X Y;HALT(X)

Expansion of V - F(V, W) yields

(w): v+w;

BEGIN X* - V; Y* - W;

X* - Y*; BEGIN V - X*; GOTO L END

L: END;

HALT(V);

F(X, Y): X - Y; HALT(X)

Later, when showing that P < PA, we will have to be able to expand all
possible "first-level" calls of recursive functions. A call f(... is a first-level call if
during execution of the scheme (under some interpretation) there is a chance the
call will not occur during another execution off. During execution, a call off is
recursive if it occurs during another execution off

(3.9) Expansion ofall possiblefirst-level calls. We construct a scheme S’ (from
a scheme S) which has all possible first-level calls expanded, as follows:

(a) Within the main (program), rewrite each assignment v - f(... where
f is not basic, as

v -f(’"){ }.
Similarly, within each definition of a function g, rewrite each assignment v f(.-.
where f is not basic, as

v - f(...){g}.



ON CLASSES OF PROGRAM SCHEMATA 75

) denotes the empty list, and indicates that the function call appears in no
function. {g} indicates the call definitely appears within an execution of g. In
general, as the construction continues, inside the braces will be a list of functions
in which the particular call appears.

(b) Iterate the following step until no longer possible, first on the main
program scheme, and then on each of defined functions: Choose an assignment

v f(wl,... wRf){fj,...,f}
such thatfis not in the list {fj, ..., f}. This indicates that this call does not appear
within another execution off, and is thus a possible first-level call. Expand the
function call as described in (3.7). Add to the list attached to each nonbasic function
call in the expanded function body the list {f,f, ,f} to indicate in which
function executions the function call occurs.

(c) Delete all the lists {... from the function calls.
The above construction, if it terminates, obviously results in an equivalent

program scheme. Second, all possible first-level calls are expanded, since as long
as one exists, step (b) will iterate and expand one.

Now note that each macro expansion deletes one call, and adds several new
ones (the ones appearing in the expanded function body). However, the number
of the elements in the list attached to each of the new ones is at least one more than
the number in the list attached to the deleted one. This, together with the fact that
the number of elements in the list attached to a first-level call must be less than
the number of (function def)s, can be used to show that step (b) terminates.

(3.10) COROLLARY. Suppose a scheme in PR has no recursive calls under any
interpretation and any execution. Then there exists an equivalent scheme in P.

Proof Expand all possible first-level calls as described in (3.9). If any function
calls still exist in the main (program), they can never be executed (they are not
first-level calls, and are thus recursive calls). Replace each by a null statement.
Since the functions defined by (function def)s are no longer needed, they can be
deleted yielding a scheme in P. Q.E.D.

The following interesting relationship between recursive calls and the pre-
dicates used in a scheme will be used later when comparing the class PR with other
classes of schemata.

(3.11) THEOREM. Suppose during execution of a scheme in PR that a function f
is called recursively--that is, it is called a second, third,..., n-th time before one
execution is completed. Then, before the last (n-th) execution off can return (can
execute a HALT(v)), some predicate Pi must have been evaluated with two different
lists of argument values a and a2, such that Pi(a) =/= Pi(a2).

Proof Label all the statements of the scheme with unique labels. During an
execution of the scheme, record the sequence of labels of statements in the order
in which the statements begin executing, beginning with the first statement executed
in the first invocation off, up until the nth call off:

L1, L2, L3, Lm.
In a separate list, record the sequence of statements executed during the nth
(deepest) execution off, until a HALT(v) off is executed:

L’L’ L’ L’2 3 q"
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Now, L1 L’I, since both sequences begin with the label of the first statement off
If q =< m, then Lq - Lq, since Lq labels a HALT(v) in f, while Lq cannot. If q > m,
then L,, - L, since L,, labels a call offwhile L, cannot. In any case, the sequences
start out the same, and at some point become different. There is a first integer i,
1 < __< q, m, such that Li 4: L’i, L_ L’_ 1. This can only be if L_ labels a
statement of the form

IF p(...) THEN $1 ELSE $2

and if the evaluations of p yielded two different values.
(3.12) COROLLARY. Given a scheme S in PR, expand all possible first-level calls

as macros, using (3.9), to yield scheme S’. Then, during execution under any inter-
pretation of S’, before any nonbasic function executes a HALT(v) (and returns), a
predicate Pi will have been evaluated with two lists a and a2 of argument values,
such that Pi(al) Pi(a2).

Proof Suppose function f in S’ executes a HALT(v) (and returns). In the
equivalent scheme S, the same HALT(v) must be executed in an nth level of the
recursive functionf By virtue of Theorem (3.11), therefore, a predicate Pi has been
evaluated twice with the property described above.

4. Other classes of schemes. We now introduce other classes of program
schemata, the class PA of program schemata allowing arrays of subscripted
variables, the class PA of schemata allowing arrays of variables and the testing
for equality of subscript values, the class PL of schemata allowing the use of labels
as values which can be assigned to variables, the class P of schemata allowing

a finite number of "markers" to be used as values, the class Ppds of schemata which
can use pushdown stores, and the class P_ which allows integer arithmetic.

PA and PL are interesting because they contain features allowed in current
high-level languages (e.g., PL/I). The pushdown store seems to be one of the
favorite data structures of the theoreticians, and the purpose of Ppds and PM is to
compare the theoreticians’ viewpoint on schemata with the programmers’.

(4.1) DEFINITION. PA is defined as the class of program schemata P, extended
by allowing v and w to denote either simple variables v or subscripted variables
aw]. Only the input variables must be simple variables.

A (one-dimensional) array B is a sequence Bo, B1, of simple variables.
Any value in {0, 1, 2,... can be used as a subscript value. In order to be
able to generate subscript values during execution, we allow the new statements

(S) v0 Ivw+ 1

Execution of v - 0 assigns 0 to the variable v. + is the successor function; if v
contains a value in , then execution of w - v + puts into w its successor + 1.

We assume that is disjoint from the domain D under any interpretation
(this will be discussed in a moment). Finally, if v contains a value not in N, then
v + yields the value 1.

If v contains a value , then Bv] references the variable Bi. If v contains a
value not in , then Bv] references B0.

Note that since and D are disjoint, if it is used as an argument to a
predicate, function, or HALT operation, the value f2 is used instead. This restriction
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is necessary to rule out meaningless comparisons between schemes with and with-
out arrays. The restrictions are not arbitrary; they serve to separate the allocation
task from the other computation mechanisms.

The reader may claim that we are not describing subscripting as performed
in concrete programming languages, for three reasons:

(1) subscript values may not appear as input, since they are not in the
domain D;

(2) functions like + are usually allowed as "basic" operations; and
(3) subscript values may not be used as input to, or be output from, basic

functions and predicates.
Our reply is as follows. We are trying to isolate different programming lan-

guage concepts and get as "clean" a description of them as possible. Second, we
want to compare the computational power ofdifferent classes ofprogram schemata.
If one class is allowed to compute using the function + with restricted properties
and the other class is not, then comparison is meaningless. However, if + is used
only to help "allocate storage" and refer to different variables, and cannot be used
in the actual computation, then a comparison may make sense.

Should a particular interpretation of a program scheme have a function F
with the same properties as + 1, then F and + can be identified with each other
in that interpretation. Similarly, should the domain D contain isomorphic to, then the two can be identified with each other in that interpretation.

Strictly speaking, statements like

(1) B[V+ 3]- W, (2) W,---2, and (3) B[5],- W

are not valid in PA schemes. We allow them because they make schemes clearer,
and they can be easily translated into PA statements. For example, statements (1)
and (2) above can be translated into

BEGIN XV+ 1;

X.--X + 1;

XX + 1;

BX - w and

BEGIN W +-- 0;

W W / 1;

W-W+I

END

END

Note, however, when we say "given some scheme S in PA" (or PAM, etc.) we
always mean a scheme which is strictly in that class.

Similarly, we can prove that the use of the predecessor function defined by

i- ifwcontainsi6 i0
(4.2) w- 1=

0 if w contains 0 or w q

does not increase the power of the scheme.
(4.3) THEOREM. Let S be a scheme in PA, except for the use of the predecessor

function. Then S can be translated into an equivalent scheme S’ in PA.
Proof S’ uses a new array DOWN to simulate the predecessor function.
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Thus DOWN[0] 0, and DOWN[i] will contain i-" for i> 0, whenever
necessary. We translate S into S’ as follows:

1. Add DOWN[0] 0; at the beginning of the scheme S.
2. Replace each statement v ,-- w + in S by

BEGIN DOWN[w + 13 w; v -- w + END

3. Replace each statement v - w in S by

v DOWN[wl. Q.E.D.

A rather interesting (but easy) result is that any scheme needs really only one

array. Note that the proof below depends only on the array feature, and therefore
the same result holds for classes in PAL, PAM, etc., which will be defined later.

(4.4) THFORFM. For any scheme S in PA there exists an equivalent scheme S’ in

Pa which uses only one array.
Proof Let the arrays used in S be A0, "’, A,_ 1. The scheme in S’ uses a

single array A, where

A[0], A[n], A[2nl, represents A0,

A[ll, A[n + 1], A[2n + 1, represents A1,

A[n- 1],A[2n- 1],A[3n- 1],... representsA,_l.

To do this, we need only change each assignment v - w + to v ,-- w + n, and
then change each reference Ai[vl to Air +

(4.5) DEFINITION. A scheme in the class Pae is a scheme in Pa with the following
statement type allowed:

(S) :: IF v (R) w THEN [1:] (S) ELSE [1:] (S)

The predicate v (R) w is defined as follows:

T ifv and w are both not in N {0},
v(R)w= T ifv, w e N and are the same,

F otherwise.

Thus v (C) w if and only if A[v] and A[w] refer to the same simple variable.
(4.6) DEFINITION. A scheme in the class PL of program schemata allowing

labels as values is a scheme in P with the following two extra statements allowed:

(S) ::=v,-I IGOTOv

If a statement v exists in a scheme, must actually label some statement.
Execution of v - assigns the label to the variable v. If v contains a label l, execu-
tion of GOTO v causes control to be transferred to the statement labeled l; if v
contains any other value, GOTO v acts like a null statement. We assume that the
set of labels L is disjoint from the domain of values D under any interpretation.
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(4.7) DEFINITION. Let s denote a pushdown store from the class PD
{PD1, PD2, } of pushdown stores. Ppd is defined as the class of schemata P

extended by the following two statements"

(S) "’= (pushdown)l(popup)

(popup) "’= v s

(pushdown) "’= s - v

Execution of a (pushdown) statement causes the contents of v to be placed on the
store s, and they become the top of the store. Execution of a (popup) statement
causes the value at the top of the store to be placed in v, after which the second
element in the store becomes the new top. If v *-- s is executed and s is currently
empty, no change is made to v or to s. Each pushdown store is initially empty.

Note carefully the effect of a (popup) if the store is empty. Sometimes the
convention is used that such a pop causes the machine to jam, or loop infinitely.
This interpretation could also have been used here.

(4.8) DEFINITION. Let m denote a member of the class of markers
M {M1, M2,... }. PM is defined as the class of schemata P, extended by the
statements"

(S)"=v,-m

IF v m THEN [l:l (S) ELSE [l’ (S)

We assume that M is disjoint from the domain D under any interpretation. Note
that any program scheme in P can use only a finite number of markers.

(4.9) DFNOr. Let _N {9, 1, 2, 3, ...}. P_ is defined as the class of
schemata P, extended by the statements"

(S)"-vQ

,--w+ llv-w- 1
IF v w THEN [l:] (S ELSE [l:] (S)

where v w is defined by

vw
T ifv and w are both not in {Q},
T if v, we and are the same,

F otherwise.

v - w + 1 (v - w 1) adds (subtracts) one from w, as usual; any value w
acts like 0.

The reader will note that schemes in PAe already have the ability to do integer
arithmetic as described above, using N instead of . We shall, however, find it
interesting to describe schemes using integer arithmetic but not arrays.

Given these classes of schemata P, PR, PA, PAe, PL, P, P_, and Ppds, we can
generate other classes in an obvious way. Thus PAL PEA is the class of program
schemata using arrays, and labels as values. We assume of course the obvious
interpretation when the various mechanisms interact. Thus, if we look at PAeL,
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GOTO v has no effect if v contains a value in , while v (R) 0 is true if v contains
a label.

The classes we are mainly interested in are PA, PAe, PAL, PAM and PpdsM. In
fact, we show they have the same computational power. However, the equivalence
between PA and the others is not effective. Thus, given a PA scheme, an equivalent
PA scheme exists, but one cannot always construct it.

5. Locators and Pi-simulators. One of the main results in this paper is that
PA has the same computational power as PAL or PAU. The proof of this result
depends upon two things:

(1) simulating label values (or equivalently markers) by a predicate Pi and
two values rt and rf where we know that Pi(rt) T and Pi(rf) F. Thus, if the
scheme uses k markers ml, m2, "", mk, we can use the vectors

(rf rt, rf rf),

(rf, rf, rt)

to represent them;
(2) being able to locate the predicate Pi and values rt and rf with the above

properties.
Let us define these concepts formally.
(5.1) DEFINITION. Let a basic predicate P of rank n be used in a scheme

$1 PAL. Let RT1, ..., RT,, RF1, ..., RF, be variables not used in $1. $2 PA is
called a P-simulator of$1 if the following holds:

if P(R T1, ..., R T,) Tand P(RF1, ..., RF,) F before execution

begins, then S2 will execute equivalently to

The term P-simulator is used because the label variables of $1 will be "simulated"
using the predicate P. Given a scheme $1 Pa (or PR), we similarly define a
P-simulator $2 of$1 where $2 is in Pa (or PR). Here $2 simulates the markers of $1.

(5.2) DEFINITION. Given a scheme S (in any class of schemes) a locator
for S is a scheme S’ with the following properties:

(i) S and S’ have the same list of input variables and use the same basic
functions and predicates.

(ii) When executing, S’ attempts to find a predicate Pi and two lists al and a2

of argument values such that P(al) T, Pi(a2) F. If it finds them, S’
(a) puts the values in a into variables RT1,..., R TRI,,,
(b) puts the values in a2 into variables RF1,..., RFRei, and
(c) transfers control to a statement BEGIN/: HALT(OMEGA), where

BEGIN/is a new unique label.
(iii) If S’ does not find the predicate P and lists a and a2, then one of the

following happens:
(a) S’ executes infinitely long, and S does also,
(b) S’ halts with value v, and S does too.
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Before showing how to put locators and Pi-simulators together, let us
first show how to construct a P-simulator in PA for a scheme PAL.

(5.3) THEOREM. For any scheme S PAL we can construct a P-simulator $2 in
PA, Of S1.

Construction. We assume without loss of generality that P has rank 1. Let
the simple variables RT and RF contain values rt and rf such that P(RT) T
and P(RF)= F.

Suppose the labels which are used in statements v - throughout the scheme
are LI,L2,..., L. Then, for each simple variable v in S, $2 uses variables
v, v, v, v. For each array A used in S, $2 uses arrays A,A,A, A.
During execution of $2, if a variable v should currently contain a value in D J ,
then that value is in v, while v ft. If the value should be the equivalent of a
labelLiinS,thenv =F,vi=rt,andvj=rffor0=<j=<k,j# i.

It should be clear now how to transform $1 into $2 PA"
(a) change every assignment v w to

BEGIN v - w" v - w’... vk - wk END

(b) change every assignment v - Li to

BEGIN v - OMEGA; v RF ;... v - RF v RT END

(c) change every assignment v f(... to

BEGIN v -f(...); v RT END

(d) change every statement GOTO v to

BEGIN IF P(v) THEN
ELSE IF P(v 1) THEN GOTO L1

ELSE IF P(v2) THEN GOTO L2

ELSE

ELSE IF P(v) THEN GOTO L
END

Note that the simulation of GOTO v works correctly if v does not contain a
label L; control passes to the next statement in the sequence. Note also that if v
has never been assigned a value, then v--v v= . The simulator
works correctly whether P() T or P() F.

(5.4) THEOREM. For any scheme $1 PAM we can construct a P-simulator

S2PA

Proof. (The proof is similar to the proof of (5.3); the markers are simulated
in a manner similar to the simulation of label variables. The proof is left to the
reader.)

The problem is, of course, to find some predicate P which is not identically
true or false (if it exists) and to find the corresponding arguments. This is the
purpose of the locator. Given S in PAL (or PAM) let us show how to put a locator
together with Pi-simulators together to form an equivalent scheme.
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(5.5) THFORFM. Let $1 in PAL (or PAM) have a locator in PA. Then there exists
a scheme in PA equivalent to $1.

Proof Suppose the locator in P, is

(Vl, Um): (body>

Suppose $1 uses n predicates P1,
P-simulator in PA for S is

.., P,, and suppose for 1, ..., n that the

(1) 1, Urn): (body)/

Then the following scheme, where each statement BEGIN/: HALT(OMEGA)
in the locator’s (body) is replaced by the null statement, is clearly in PA and
is clearly equivalent to $1. W1,’", Wm are new, unique variables. Remember,
when the locator finds a two-valued predicate Pi, it initializes R T, RFj,
j 1,..., RPi, and then jumps to BEGIN/. Each simulator uses the global
variables R T, RFj

(body);

BEGIN1 v <- W1; u .t,__ Wm (body)l;

BEGINn: Vl W1;’’’;Vm -- W,,,; (body). Q.E.D.

by

The following result will help us later in proving that PR < Pa.
(5.6) THFOREM. Any scheme S in PR has a locator $1 in P.
Construction. We assume without loss of generality that the predicates
.., P, used in S have rank 1. The construction of S proceeds as follows:
(a) Expand all possible first-level calls of S (construction (3.9)).
(b) Replace each statement of the form

IF Pi(v) THEN S1 ELSE S2

IF Pi(v)

THEN IF Pi(RT) THEN S

ELSE BEGIN RF ,- R T; RT ,-- v;

GOTO BEGIN/

END

ELSE IF Pi(RT) THEN BEGIN RF ,- v; GOTO BEGIN/

END

ELSE $2

(c) Add statements BEGIN/: HALT(OMEGA) at the end of the main
(body) of the scheme. All jumps GOTO BEGIN/are assumed to be jumps to

these "global" labels.



ON CLASSES OF PROGRAM SCHEMATA 83

(d) Note that, as soon as a predicate is determined with two argument
values al, a2 such that Pi(al) =/= Pi(a2), control transfers to BEGIN/. By virtue
of Theorem (3.12) and step (b), no recursive function of the scheme constructed
so far ever executes a HALT (or return). Replace each HALT(v) within a function
definition by the null statement.

(e) No function ever returns. Suppose a function B is called within a func-
tion A (see Fig. 2). Since B never returns, there is no need to save A’s variables.

/ variables

functi;fn B / B

/variables/
/ of / call B /
/ function A / ." /

FIG. 2

We can therefore replace each call by a GOTO and change,each function to a
normal sequence of statements in the main scheme. To do this, perform the
following for each functionf. Assume that the variables V1, ..., Vs, .., V, used
in each f are different from those in the main scheme or other functions. Change
the function definition

to

f(V1,"’, Vs): (body)

f: (body)

For each call v -f(wl, ..., wy), generate new variables W1,
replace the call by

BEGIN W1 - w1;’" I/Vy wy;
V +-- Wl; Vrf (-=- Wrf;

Vr++l + OMEGA;... V, + OMEGA;

GOTOf
END

Wrf and

The result is a locator in P for S.

6. The relation between PA and PR. We begin by showing how to construct a
scheme in PAL equivalent to a given scheme in PR. We then show how to get rid
of the labels as values (using the results of the last section) to arrive at an equivalent
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scheme in PA. We end with a scheme which can be described in PA but not in PR,
which yields PR < PA. Thus, the programming language feature of arrays of
subscripted variables is more powerful than that of recursive procedures.

Given a PR scheme, the equivalent PAL scheme uses an array A of subscripted
variables as a stack to hold the parameters, local variables, and return information
of the functions currently being executed. This information for a particular
execution of a function is collected in a "contiguous" set of subscripted variables
in the array A, called a data area. In a typical implementation of recursive
procedures in an AL6OL-like environment, when a function execution is complete,
the corresponding data area locations on the stack are released for other use.
Here we are not interested in efficiency of any sort, and these locations will not
be freed.

A global variable TOP will always contain the value of the index of the
last subscripted variable allocated. A second variable AA (for Active Area) always
contains the index j of the data area of the function currently being executed
(the active function). If its data area is k + locations long, it consists of the
variables A[AA], A[AA + 1],..., A[AA + kl.

Consider a function f. Assume the variables it uses are V1, V2,.’.,
where V1, V2, ".., VRI are the formal parameter variables. Then the data area
for an execution off is p + 2 locations long and has the format shown in Fig. 3.

AA value for function
that called this one

return label

FIG. 3

The "return label" is the statement label to which control must return on comple-
tion of the function execution.

A call tofin the recursive scheme is replaced by a compound statement which
(1) allocates p + 2 locations for the function’s data area, (2) saves the current
active area index AA in the first location of the new data area, (3) moves the
return label and the values of the actual parameters into the new data area,
(4) assigns the undefined value f to all the other variables used in the function,
(5) puts into the global variable AA the index of the new area, and (6)jumps to
the first statement off to begin executing.

Within each function (body) a reference to V is translated into a reference
to A[AA + i], since the variables for the function are in the data area defined
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by AA. Each HALT(V) in the original function definition is correspondingly
replaced by

BEGIN RV A[AA + i];GOTO A[AA + (p + 1)3 END

where RV is a global variable. Thus, when executing, the value of the function
is stored in R V and control transfers to the statement defined by the label in the
last location of the data area, which will be the statement following the original
jump to the function. At this return point, the following statements will reinitialize
the calling function’s data area and store the value in RV in the appropriate
variable:

AA A[AA];v ,-- RV

This outline should be enough to convince the reader; the detailed construc-
tion is given in the Appendix.

(6.1) LEMMA. Given a scheme in PR, one can construct an equivalent scheme
in PAL"

(6.2) Example. Let S PR be

(X, Y):IF P(X)THEN Y f(X);

HALT(Y);

f(X): IF Q(X)THEN V X

ELSE BEGIN V g(x); V f(V) END;

HALT(V)

Then S’ is

(X, Y): TOP - 0; AA - 0;

IF P(X) THEN

BEGIN TOP ,-- TOP + 1; A[TOP] ,- AA;

A[TOP + 3] RL1;

A[TOP + 1] X; A[TOP + 2] OMEGA;

AA TOP; TOP TOP + 3;

GOTO Lf
RLI:AA A[AA]; Y,- RV

END;

HALT(Y);

-Y f(x)



86 ROBERT L. CONSTABLE AND DAVID GRIES

Lf" IF Q(A[AA + 1])THEN A[AA + 2] A[AA + 1] IV X

ELSE BEGIN A[AA + 2] g(A[AA + 1]); IV g(X)

BEGIN TOP TOP + A[TOP] AA; -V f(V)

A[TOP + 3] RL2;

A[TOP + 1] +--A[AA +
A[TOP + 2] OMEGA;

AA +-- TOP;TOP TOP + 3;

GOTO Lf
RL2" AA A[AAI;A[AA + 21 ,- RV

END

END;

BEGIN RV - A[AA + 2]; GOTO A[AA + 31 END [HALT(V)

(6.3) THEOREM. Given S Pr, an equivalent scheme $3 exists in PA.
Proof Construct (by Lemma (6.1)) a scheme $1 e PAL equivalent to S.

Construct a locator $2 e P for S (by Theorem (5.6)). Since $1 is equivalent to S,
S2 is also a locator for S. Since $2 is a locator for S, by Theorem (5.5) there is a
scheme S3 e PA equivalent to $1, and thus equivalent to S. Q.E.D.

The generation of a PA scheme from a PR scheme was an effective construction.
We now show that there exists a PA scheme for which no equivalent PR scheme
exists, which indicates that the array mechanism is more powerful than recursion

In [51 Paterson introduced a form of parallelism using a new operator/OR/.
(6.4) DEFINITION. P(X)/OR/Q(x) has the value
(a) true if and only if either P(x) or Q(x) or both are defined and true;
(b) false if and only if both P(x) and Q(x) are false;
(c) undefined otherwise.
(6.5) Example.

(X)" IF Q(X) THEN V,-- FI(X ELSE V,-- X; HALT(V)

Q(X)" IF P(X) THEN V -true

ELSE VI ,- Q(L(X)) /OR/ Q(R(X));

HALT(V)

In [5] it was proved that the scheme leaftest of Example (6.5) is not
computable.

(6.6) THEORFM. P < PA.
Proof We show that Example (6.5) can be computed in PA. Suppose we

write L(R(x)), L(L(x)), R(L(x)) as LR(x), LL(x), etc. Then (6.5) halts if and only
if there exists a string e e {L, R}* such that P(e(x)) true. The idea is to use an
array to describe a breadth-first search of the binary tree rooted at x (with L(x),
R(x) as branches for any x).
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The PA scheme is simply

(X): TOP -0; CURRENT 0; AITOP] X;

WHILE P(A[CURRENT]) DO

BEGIN TOP ,- TOP + 1 A[TOP] ,-- L(ACURRENT]);

TOP ,- TOP + 1 A[TOP] ,- R(A[CURRENT]);

CURRENT ,- CURRENT+ 1;

END;

V ,- FI(X); HALT(V)

7. The relation between Ppds and PL Let us write P(,,,,) to indicate a PpdsM
scheme which uses m pushdown stores and n special markers. In this section, we
give constructions which show that

P(n,m) P(E,n+m+ 1) - P(2,1) for n >= 2, m _>_ 1;

PR =< P(1,o).
(7.1) LEMMA. P(n,m) --< P(z,n+m+ 1)"

Outline of proof Given a scheme S in P(,,,,) which uses pds’s PD1,..., PD,,
and markers Mx, ..., M,,, reserve new markers Ao, A x, ..., A,.

When S references a pds PDi, the corresponding scheme S’ in P(z,n+m+ )
references its main pds PD.

A (pushdown) statement PD ,- v in S is executed in S’ by

BEGIN PD - v; PD -" A END

Thus the marker Ai on the PD indicates that a value in PDi is on top of the stack.
A0 is put on the bottom of PD to indicate when it is empty.

A (popup) statement v - PDi is simulated in S’ by a compound statement
which searches down the main pds PD, looking for a marker Ai. The PD element
just below it is then the value needed to store in v. This search down PD requires
a second, auxiliary pds to save elements of PD. After executing the pop, the
main pds PD is restored using the auxiliary pds.

(7.2) LEMMA. P(z,m) P(z,1) fOr m O.
Outline ofproof The m markers used in a (2, m) scheme S can be encoded in

binary and decoded using the finite control of the program scheme. For example,
suppose m >__ 2 and M1, ".., M,, are the markers being used. Then let the equiva-
lent scheme S’ e P(2,1) use a marker M, and represent a marker M in S by

M f... f M f f2

i-1 m-1
times times

in the S’ scheme. See the Appendix for details.
(7.3) THEOREM. P,,,,) P2,1)for n >= 2, m >= 1.
Proof Apply Lemmas (7.1) and (7.2).
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(7.4) LEMMA. For any scheme S PR there exists an equivalent scheme in

PpdsL which uses only one pds.
Proof. We leave the proof to the Appendix. The idea is the same as the

simulation of recursion using an array.
(7.5) THEOREM. PR =< P(1,o).
Proof By Lemma (7.4) a scheme S in PR has an equivalent scheme $1 in

PpdsL which uses one pds. If $1 uses predicates P1,"’, P,, we can certainly
construct Pc-simulators for $1, which will all be in P(1,o) and all use the same stack.
The proof then hinges on finding a locator for $1 and thus S, the locator being in
P(1,o). Theorem (5.6) gives us the locator.

8. The equivalence of PAL, PAM, PpdsM, and PAe In this section we first prove
that PAL and PAM are equivalent. Lemmas (8.2) and (8.3) then establish the equiva-
lence of PAM and PpdsM" The equivalence of PpdsM and PpdsL could also be estab-
lished; we shall not do that here.

Generally speaking, we regard PAM as the superior class ofschemes. Algorithms
using pushdown stores often tend to be cumbersome, while arrays are more
natural to work with and can be easily used to simulate pushdown stores. P is
probably a better class of schemes to use than P. In general, programs using
few "GOTO’s" are clearer, easier to read, and easier to debug, and the feature
of labels as variables just tends to increase the number of branches.

(8.1) THEOREM. PAL PAM.
Proofi We can show that given any scheme S PAL we can construct an

equivalent scheme S’ in PAM, and vice versa.
Suppose the scheme S uses n labels L1, ..., L,. Then the scheme S’ will use

corresponding markers M1,"’, M,. Replace each statement v -Le in S by
v - Me. Replace each statement GOTO v by

BEGIN IF v m THEN GOTO L

ELSE IF v M2 THEN GOTO L2

ELSE

IF v M, THEN GOTO L,

END

The result is clearly an equivalent scheme S’ PAM.
Now suppose we are given a scheme S’e PAM which uses n markers M1,

M2, m Consider these to be labels and append to the scheme the sequence
of statements

Ml: GOTO

M2: GOTO V2;

M.: GOTO V,,;
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where the are new, unique simple variables. For each statement

IF v M THEN $1 ELSE S2

generate three new labels LT, LF, and DONE, and replace the statement by

BEGIN VI*-LF; Vz *- LF; V,,-- LF; V ,-- LT;

GOTO v;

LF: $2; GOTO DONE;

LT: $1;

DONE:

END

Inspection of this sequence shows that, when executed, $1 is executed if and only
if v Mi; otherwise $2 is executed. This is the desired property.

(8.2) LEMMA. PpdsM PAM"
Proof Given a scheme S in Ppsm we construct an equivalent scheme S’ in

PA. Each pushdown store PD in S is simulated by an array A in S’. A counter
CA indicates where the top of A is. Each element of PD is described by two con-
secutive locations in A, with the format

actual contents of PD element
marker

The second location indicates whether the PD is empty or not. For this purpose,
the PA scheme uses two extra markers Mo and M. An empty stack is represented
as in Fig. 4a while the PD of Fig. 4b would be described by the array A of Fig. 4c.

f

Mo
value2
value

value 2

M1
valuel
M1

Mo
CA 0 CS 4

(a) empty pds (b) PD with elements (c) corresponding array A

FIG. 4. Simulating a pushdown store by an array

One can easily see how to construct S’ equivalent to S. For each PD used in
S, perform the following three steps"
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(1) Generate a unique array name A and a simple variable CA, and insert
in the beginning of S the statements to initialize the array:

CA - 0; A[0] <-- Mo; A[1] OMEGA;

(2) Replace each statement PD v by

BEGIN CAECA + 2; A[CA] .-- M1; A[CA + 1] v END

(3) Replace each statement v - PD by

BEGIN IF ACA] M

THEN BEGINv<--ACA + 1]; CAECA-" 2END

END

(By virtue of Theorem (4.3) we can use the function and thus also -2.)
(8.3) LEMMA. PAM PpdsM"
Proof. Given a scheme S in PA, we construct an equivalent scheme S’ in

PpdsM" In S’, each value in D and each marker M used in S will be represented by
itself. Let * be a new, unique marker. Then each value computed in S will be
represented in S’ by a sequence of / *’s. Since any variable may contain a value
i, except when that variable is used as an argument to a basic function or predicate,
every variable in S will have to be represented in S’ by a pushdown store!0f used
as an argument, we can use either or just a single asterisk in its place.)

Our task of transforming S into S’ will be performed in four steps. First we
create $1 equivalent to S. In $1, all the arguments to functions, predicates and
HALT operations are newly introduced simple variables which, because of the
way they are introduced, need not be treated as pds’s. Second, we create $2 equiva-
lent to $1 solely in order to simplify the transformation from a simple variable to a
pds. For example, a statement AIv] AIw] will be replaced by

BEGIN Vo +-- A[w]; A[v] - Vo END

where Vo is a new simple variable.
Third, in step (3) we finally consider simple variables as pds’s and show how

each statement must be changed accordingly. For example, we must change
v ,- w (v, w simple variables) into a compound statement which moves pds w into
pdsv.

Finally, we show how arrays are represented as pds’s, and show how to
transform the only two statement types which use arrays:

A[w] +-- v and w A[v] (where v, w are simple variables).

In general, each array A is represented by a pds PA. In PA, the actual values
of A are separated by a comma ",". Thus the array A in Fig. 5a is represented by
the pds PA of Fig. 5b. To reference a value A[i], in S’ we first move all of PA onto
an auxiliary stack PDT1. We then use the representation of as + asterisks to
pop commas off PDT1, leaving the value A[i] at the top of PDT1.

Details are left to the Appendix.
(8.4) THEOREM. PaL PpdsM"
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Proof. Apply Lemmas (8.2) and (8.3).
(8.5) LEMMA. PAM ----< PAe.
Proof. In Pae one has the ability to test whether two subscript values are equal

(see Definition (4.5)). Suppose we have a scheme S in Pa which uses markers
M1, ..., M,. We translate S into an equivalent Pae scheme S’ as follows.

(a) array A

+ times

(b) corresp, pds PD

FIG. 5. Simulation of array A

We use 1, 2, ..., n N in place of the n markers. However, we must be able
to tell whether a value is actually a subscript or a marker. To this end, every
simple v (except OMEGA) in S is represented by two variables v, vo, while every
array A is represented by arrays A and Ao. (Below, we use wo to represent a simple
variable wo or subscripted variable Wo[V].) If during the execution of S we have
w Mi, then w (R) e N while Wo 1. Otherwise, w contains a normal value or
subscript while Wo 0 or wo contains a value in D.

Note that for both simple and subscripted variables w, initially Wo and w
both contain q, so initially everything is correct. Change S as follows:

1. Change every assignment v +-- w to

BEGIN v ,-- w; Vo Wo END

2. Change every assignment v f(...) to

BEGIN v f(...);Vo - 0 END

3. Change every assignment v ,- 0 to

BEGIN v ,- 0; Vo +-- 0 END
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4. Change every assignment v ,-- w + to

IF Wo 0 THEN BEGIN v ,-- w + 1; Vo <-- 0 END

ELSE v ,-

5. Change every assignment v ,-- Me to

BEGIN v ,- 1;vo ,-- END

6. Change every test

IF v Me THEN $1 ELSE $2

BEGIN IF Vo (R) 1 and v (R)

THEN S ELSE S2

END

(8.6) LEMMA. Pae PAM"
Proof. Suppose S is in PAe. We show how to construct an equivalent scheme S’

in PAM. All we need do is show how to translate a statement
(8.7) Ifw@vTHENSIELSES2

where the result of the test is defined in (4.5). First of all, use a new array M and
two markers Mo and M1. Put the statement M[0] ,-- Mo in the beginning of the
scheme S, and change each statement v ,-- w + 1 to

BEGIN v w + 1; M[v] M1 END

This assures us that during execution, if any value > 0 is calculated, then M[0]
Mo and M[1] M1,"’, M[i] M1. Let W, V be new variables, and change

each statement (8.7) in S to

BEGIN V ,-- v; W,- w;

WHILE M[V] M and M[W] mx DO

BEGIN V,-V- 1;W,--W-" 1 END;

IF V= Mo and W= Mo
THEN $1 ELSE $2

END

(8.8) THEOREM. PAe -= PAM.
Proof. Apply Lemmas (8.5) and (8.6).

9. The noneffective equivalence of PA and PAM" Given any scheme S (in PA or
PAM) we can construct an equivalent "completely labeled" scheme, in which all
statements (in the syntactic sense, all statements (S) see 2.1) are labeled. For
example, we do this in Fig. 6b for the scheme in Fig. 6a. We can then assume that
every scheme is completely labeled.
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(V, W): V FI(V, W);

LI:IF PI(V) THEN

GOTO L7

ELSE BEGIN

V +-- F2(V);

GOTO L

END;

LT: HALT(V)

a)

(V, W): L2: V- FI(V, W);

L1 IF PI(V) THEN

L3: GOTO L7

ELSE L4: BEGIN

L5 V - F2(V)

L6 GOTO L1

END;

L7: HALT(V)

(b)

FIG. 6. Completely "labeling" a scheme

(9.1) DEFINITION. The behavior of (the execution of)a scheme (under some
interpretation) is the sequence of labels of the statements executed, in the order
they begin executing.

Thus, suppose scheme 6b is executed under some interpretation, and that
P(V) is false the first time it is evaluated and true the second time. Then the behavior
is

L2, L1, L4, LS, L6, L1, L3, LT.

Of importance to us is the "autonomous" behavior of a scheme.
(9.2) DEFINITION. Let S be a (completely labeled) scheme which uses n predi-

cates P1, "’", P,. Let v (v l, "", v,) be a vector of n values from the set {true,
false}. Then the v-autonomous behavior of S is the behavior of S assuming that

PI =-v, P2 =-Vz,’",P,=v,,

Note that we have defined the autonomous behavior indepcndently of both
the input values of an execution and the basic functions. This is of course not
obvious and must be proved.

(9.3) LEMMA. Let S be a scheme in PAM which uses n predicates P1, P,, and
suppose that P1, Pn are all constant. Then the behavior of S is independent of
the domain D, the interpretation of the basicfunctions, and the input values.

Proof. Suppose we begin executing S under two different interpretations, or
under the same interpretation with different input values. Suppose we get two
sequences of labels

L1,L2,"" Lk, Lk+ "’’,

L1, L2, "’’, Lk, L’k +
such that they first differ at the (k / 1)st label. Clearly, L must label a conditional

IF P( THEN S1 ELSE $2
or

IF v m THEN S ELSE S2
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Since all predicates are constant, Lk must label the latter conditional. We can
show a contradiction if we can show that,

(9.4) just before execution of any step, a simple or subscripted variable con-
tains either

(1) the same marker m under both executions, or
(2) the same subscript value in N under both executions, or
(3) values in the domain D (possibly different).

We prove this by induction on the number of statements whose execution has
begun. For 1, just before the statement labeled L1 begins executing, all variables
contain values in the domain D. Suppose (9.4) is true for n 1, 2,..., < k, and
suppose we begin executing the statement labeled Li. The only statements which
can change a value (and thus possibly contradict property (9.4)) have the forms

(1) v w (v and w simple or subscripted),
(2) v m,
(3) v - 0,
(4) v +-- F(...),
(5) v,-- w + 1.
Since under either execution, up to step k the same statements are executed,

after execution of Li, (9.4) will still hold regardless of which of (1)-(5) is performed.
We now can begin our discussion of the nonconstructability of S’ PA

equivalent to S in PAM.
(9.5) TI-IEOREM. Let v be a vector ofn valuesfrom the set {true, false}. Let S be a

scheme in PA using n predicates. Then it is decidable whether the v-autonomous
behavior of S is finite or infinite.

Proof. Since the v-autonomous behavior is independent of the interpretation,
we can begin constructing the behavior without giving an interpretation. Let S
have p labels (and thus p statements (S)). Execute and record the behavior of S
until either it halts or until p + 1 labels have been recorded, whichever comes first.
If it halts before p + 1 labels have been recorded, the v-autonomous behavior is
finite. If p + 1 labels are recorded, then one label is recorded more than once. Thus
a statement is executed more than once, which means there is a loop. This looping
process cannot stop, since all predicates are constant and the only way to change
the sequence is to execute a test

IF P(...) THEN LI’S1 ELSE L2" $2

where P(...) yields a different value.
(9.6) LEMMA. It is undeeidable whether the v-autonomous behavior of a scheme S

in PAM is finite or not.

Proof. Given a Turing machineM using a single tape, infinite to the right, and a
0, alphabet, we can construct a program scheme S in PA which has finite
autonomous behavior if and only ifM halts on blank tape (all 0’s). This reduces the
T.M. halting problem to the finiteness problem for autonomous behavior, and
since the halting problem is undecidable, so is the finiteness problem.

The T.M. tape is represented by an array T, with a counter I (initially 0)
indicating the position of the read-write head. Two marks Q and 1 are used. S
executes TI] - m when M writes the mark m in the ith tape cell. When M reads the
cell, the scheme S asks "If T[I] m....". When M moves right, S executes
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I I + 1, and when M moves left, by virtue of Theorem (4.3), SM can execute
I,-I:1.

We leave the details of the construction of SM to the reader.
(9.7) THOR. One cannot effectively construct a scheme S’ in PA equivalent to a

scheme S in PAM.
Proof. If S’ PA and S PAM are equivalent, then the -autonomous behavior

of S is finite if and only if that of S’ is finite. If S’ could be effectively ConstruCted
from S, then applying the decision procedure for finiteness of the autonomous
behavior of S’ would contradict Lemma (9.6). Q.E.D.

Our last step is to show the existence of (but not an effective construCtion for)
a scheme S’ in PA equivalent to a scheme S in PAM" Theorem (5.5) indicates we
need only prove the existence ofa locator in PA for S (see Definition (5.2)). Assuming
S uses n predicates P1, "’", P,, this locator has the form shown in Fig. 7, where
the arguments of the predicates are all OMEGA. (Thus if P1 has two arguments,
the cell in the upper box is PI(OMEGA,OMEGA).) We should point out that it
is not necessary to use f as the argument, it just simplifies the construction. Any
of the input values could have been used.

Let us suppose that an interpretation is given to the domain D, predicates
P and functions Fi, and that the locator with the above form is executed with
some input values. Then the locator tests all the predicates Pi and executes
one of the statements Sj, depending on the outcome of the tests. There are 2"
different Sj, corresponding to the 2" possible v-autonomous behaviors of the
scheme S. For example, Sa corresponds to v (true, ..., true).

Let us assume that the execution mentioned finds P(...) P,(...)
true. Then v (true, ..., true). Sa is executed, and must perform the following"

(9.8) $1 must "simulate" the v-autonomous behavior ofscheme S until either"
(i) it halts and outputs the same result that S would, or
(ii) a two-valued predicate P is evaluated. At this point, RT,..., RT are

initialized to f, RFI,..., RF,, are set to the argument list which yielded P(...)
false, and control is transferred to BEGIN/.

Thus, since P(OMEGA) true for 1, ..., n, S assumes that all predicates are
constant (and executes essentially as S would) until it finds out differently.

BEGIN1 HALT(OMEGA); BEGINn HALT(OMEGA)

FIG. 7
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We now show the construction of S only for v (true,..., true). The
construction of the other Sj is similar. There are two cases, depending on whether
the v-autonomous behavior of S is finite or infinite.

(9.9) Construction ofS assuming the v-autonomous behavior ofS is finite
L1, L2, Lk.

We assume without loss of generality that all predicates have rank 1. The
above sequence indicates the order in which the statements begin executing. In
effect, we have unraveled all loops. Let us write this sequence as

BEGIN LI:

(9.10)

END

where (S)j is the statement labeled Lj.

L2:

Lk: <S)

For example, the v (true) behavior of the scheme in Fig. 6b is L2, L1, L3, L7,
so we get the sequence

BEGIN L2: V +- FI(V, W);

LI: IF PI(V) THEN L3: GOTO L7 ELSE L4: BEGIN END

L3 GOTO L7

L7 HALT(V)

END
We now show how to translate (9.10) into a Pa statement with the required

properties. As an illustration, we shall translate the above into

BEGIN V FI(V, W);

IF PI(V)THEN

ELSE BEGIN RT +- OMEGA RF ,-- V;

GOTO BEGIN1

END;

END

HALT(V);

Note that the unnecessary GOTO L7 was deleted and that the conditional state-
ment involving PI(V) was changed as necessary.

To translate (9.10), we first categorize the (S)j into the types
(1) v - w, v ,- 0, v w + 1,.v F(...), HALT(v), "empty"
(2) IF P,(v) THEN S ELSE S
(3) IF v m THEN S ELSE S, BEGIN (S-list) END, GOTO
(4) v rn
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Next, forj 1, ..., k execute one of the following, depending on the type of (S)j:
Type
(1) replace Lj: (S)j by "(S)j;" (the simple statement remains);
(2) replace Lj: (S)j by

IF Pi(v) THEN ELSE BEGIN RT OMEGA: RF -v;

GOTO BEGIN/

END;

(3) delete Lj: (S)j (it is not needed, since the statement to execute next is on
the next line);

(4) replace L: (S) by v OMEGA.
We assert that this process yields a statement satisfying (9.8), assuming that

Pi(OMEGA)--true for all i. Note that if Pi(OMEGA)= true, executing $1
executes the "simple" statements of the v-autonomous behavior of S, and yields
the necessary value. If a predicate P is detected which is not identically true, we
jump out as required.

(9.11) Construction of $1 in case of infinite v-autonomous behavior.
The aim of $1 is either to find a predicate which changes value, or to HALT

with the same output as S. We cannot "unravel" the statements executed, as in the
finite case. However, in the case of infinite v-autonomous behavior, we need not
worry about halting, since S does not. We need only guarantee that $1 find a
binary-valued predicate if it exists (regardless of whether S finds one). This is
accomplished by systematically generating and testing all possible values that
might be generated by S.

More precisely, consider the set of all function expressions of S defined as
follows. Let S have as inputs x l, ..., x,, rank p functions f, ..., ff, for p 1,
.., m and rank q predicates p, ..., plqq, q 1, ..., r. The set of function expres-
sions is generated by the following productions:

g -- X x2 I"" x.
E ---, f](E)l Ifl(E)

E - f";(E,..., E)I IfL(E,...,, E)

This set of expressions, {E}, contains all possible values that can be tested in the
predicates.

$1 searches the entire set {E}. The form of $1 depends on m, the maximum
rank of the functions and predicates; and $1 for rank m + 1 is constructed induc-
tively from S for rank m. To indicate the general nature of S 1, let us first present S
for the case of one predicate P of rank 1, one function f of rank 2, and a single
initial value Vo. We write a program to generate and test values in the following
order:

vl f(vo, Vo),
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I)2 f(Vl VO),

V4 f(v2, VO),

V7 f(v3, VO),

/)3 f(Vo, Vl),

v5 f(v,, v), 1)6 f(vo, v2),

V s f(v2, Vl),

This is illustrated by Fig. 8, where the row (column) specifies the value used for the
first (second) argument, and the numbers at the grid points indicate the order in
which the new values are generated.

U0 V V2 U3 J

FIG. 8

An obvious statement for S would be the following, where A contains the
array of values, K indicates how many values are currently generated in A, and I
and J are counters for the subscript of the first and second argument values. The
only problem is the statement which tests I; it is not allowed in PA.
BEGIN K -0;I 0;J 0; A[0] - Vo;

LOOP" IF PI(A[K]) THEN Check new value in P1
ELSE BEGIN RT OMEGA; RF A[K]; and jump out if

GOTO BEGIN 2-valued
END; predicate found.

K K + A[K-] f(A[I], A[J]); Generate new value
kusing vi, Vs as arguments.

JJ + 1;

SAVE *-- I;I +- I 1;
IF I@SAVE THEN
BEGIN I - J J -0 END;

GOTO LOOP

J increases

-Decrease 1. If it does not
change, we are at end of
diagonal (see Fig. 8)
and must begin new one.

Test new value.

END
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To get rid of this test on I, we use two extra arrays. ADI] is an array of "down"
pointers; AD[I] I 1 (except for ADIO], which we explain in a moment). Thus,
we replace the statement I - I 1 by I - AD[I].

Secondly, we replace J by an array of subscripts AS. If A[I] is used as the first
argument to f, then A[ASII]] is used as the second argument. Note that the first
time AII] is used as the first argument, the second argument is A0]. Thus, when we
generate a new value A[K], we set AS[K] 0. Moreover, the second (third, etc.)
time A[I] is used as the first argument, the second argument is A[ (A2], etc.). This
means that after using AI] as the first argument, we should increase AS[I] by 1.
This leaves us with the following program which should be clear except for (i) the
statement ADO] ,-- AS[0] and (ii) how we begin a new diagonal on the diagram in
Fig. 8.

BEGIN K +- 0;I 0; A[0] ,- Vo; FInitialize
AS[O - 0; ADO] - 0; l

LOOP" IF P (A[K]) THEN [-Check new value
ELSE BEGIN RT OMEGA; RF AK];

GOTO BEGIN
END;

K - K + 1; A[K] - f(AI], AFASII]]);
ASK] - O; ADFK] K 1;

Generate new value

IfonCrease

subscript
r next time

L2 AD[O3 +-- ASIO] ;1 ,- ADI [Fix 0-down pointer
GOTO LOOP

END
As long as we are decreasing I (going along a diagonal in Fig. 8), the program is

easy to follow. Now, suppose I 0 and we are evaluating f(A0], AlAS[OIl).
Then, according to Fig. 8, the next value to calculate is f(AIASIO] + 1], A[0]), and
I should be changed to ASIO] + 1. The statement labeled L1 increases ASO] as
necessary, and line L2 puts the correct value in I! The statement AD[0] ASIO] has
essentially no effect unless I 0, in which case it is used to help put the right value
in I.

We leave the details of the construction of a general $1, assuming infinite v-
autonomous behavior and functions of rank greater than 2, to the Appendix. A
more detailed explanation of the process can be found in 8].

To summarize: The locator in PA for S PAM is given in Fig. 7. Each of the
statements Sj depends on the corresponding v-autonomous behavior of the scheme
S. If finite, (9.9) shows how to construct Sj. If infinite, the construction of Sj is
outlined in (9.11)and the Appendix. Ifthe behavior ofS is infinite, the corresponding
statement Sj just generates and tests in the predicates all possible values, until
a predicate is found to be not constant. Remember this whole construction is
noneffective, because we cannot decide whether the v-autonomous behavior is
finite or infinite. This discussion, together with the fact that PA =< PAM, yields the
following theorem.

(9.12) THEOREM. PA -= PAM"
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10. Effective functionals on total interpretations. In [7] Strong proposed the
class of effective functionals as a universal class. We outline here the equivalence of
this class EF (assuming all predicates and functions are total) with PAe. While
doing so, we also conclude that Pcl,o) is universal (this latter result is actually due
to Strong [private communication]), where Po,1) is the class of schemes using one
pushdown store and integer arithmetic. Hence we show that
_-<Pa.

Please remember, we do not give formal proofs, but very brief outlines of the
constructions.

Let X 1, "’", X, be input variables, F1, "", F,, be (total) basic function names,
and P1, "’", P be (total) predicate names. An expression e (or ei) has one of the
forms

(1) Xi (the ith input variable),
(2) F3(el,... eRr,).

A proposition has one of the forms
(1) n(e, enn),
(2) --P(e,..., eRp) (complement of P(...)).
(10.1) DEFINITION. A computation is a finite sequence of expressions and pro-

positions, the last of which must be an expression.
(10.2) Example. (PI(X,),--I(F,(X,)), FI(X,)}
Given an interpretation of the predicates and functions and some input values,

to evaluate a computation, we evaluate its expressions and propositions from left
to right until either

(1) a proposition yields the value false, in which case the computation has no
value; or

(2) the last expression is evaluated, in which case the value of the computation
is the value of this last expression.
Computation (10.2) yields a value, the value of F(X), if and only if both P(X)
and--P(F(X)) are true.

(10.) DEFINITION. A (total) effective functional in the class EF is a recursively
enumerable set ofcomputations in which, given any interpretation ofthe predicates
and functions and input values, if two or more computations yield a value, they
yield the same value. This value is of course the result of the execution.

As an example, consider this completely labeled scheme in P"

(X)" LI" Y,--X;

(10.4) L2" IF P(Y) THEN
L3" BEGIN L4" Y B(Y);L5" GOTO L2 END;

L6" HALT(Y)
This scheme can be transformed into the effective functional

(--,P(X), X) 1computation

(P(X),-P(B(X)), B(X)) computation 2

(10.5) (P(X), P(B(X)),--,P(B(B(X))), B(B(X))) computation 3
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A quick look at how we get (10.5) from (10.4) will give us the idea for transforming
any scheme in Pne into an effective functional. Note that any finite behavior yields a
corresponding output value, so that the effective functional should have one
computation for each different finite behavior of(10.4). Let us begin recording the
possible partial behaviors of (10.4) of length 1, 2, 3, etc.

length 1 L 1
length 2: L1, L2
length 3 L1, L2, L3 and L1, L2, L6 (HALTS)
length 4: L1, L2, L3, L4
length 5 L 1, L2, L3, L4, L5
length 6 L 1, L2, L3, L4, L5, L2
length 7 L1, L2, L3, L4, L5, L2, L3 and

L 1, L2, L3, L4, L5, L2, L6 (HALTS)
Any partial behavior whose last label labels a HALT corresponds to a computa-
tion. Let us determine the computation for the second behavior which HALTS:
L1, L2, L3, L4, L5, L2, L6.

We look at the statements executed by this finite behavior, in order, and keep
track of the (symbolic) values assigned to each variable. Statement L1 indicates
that the value of Y is obtained by evaluating the expression "X." L2 labels a
conditional, and since the one following it is L3, P(Y) must be true. So we build the
first proposition of the computation by substituting for Y the symbolic expression
which yields its current value. The first proposition is "P(X)."

Executing L4: Y,-- B(Y) indicates that Y now contains the value resulting
from evaluating "B(X)," since Y previously contained "X." After executing L5 we
again come to the conditional labeled L2. This time L2 is followed by L6, so P(Y)
must be false. Hence, we put the second proposition into the computation:
"--P(B(X))." Now we come to L6: HALT(Y). This results in the last and only
expression in the computation, "B(X)." Hence we end up with computation 2 of
the effective functional (10.5).

Given a finite behavior, then, we generate the computation by sequencing
through the statements, keeping for each variable the symbolic expression which
yields its value, i.e., executing under the free interpretation. For each conditional
statement a proposition is put into the computation. The final HALT(v) results
in the final expression, the current symbolic expression for v.

(10.6) ASSERTION. Let S be a scheme in PAe" Then there exists an equivalent
effective functional on total interpretations.

We must give a recursive procedure for enumerating the computations. At
least for a scheme in P, the above discussion shows how to enumerate the finite
behaviors of the scheme, and from a finite behavior how to construct the computa-
tion.

What about schemes in Pae? Can we enumerate the finite behaviors? Can
we construct valid computations for them? The problem is of course with state-
ments like:

(10.7) L IF v (R) w THEN L2:(S2 ELSE L3:(S3
(If the reader is unsure as to the meaning of (R), please read Definition (4.5) carefully
now.)
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As we build the partial behaviors, we record with each a list of variable-value
pairs--the list of all simple and subscripted variables whose values are in .
Thus, if the partial behavior ends with labels for the statements V O, A[VI
,-- V + 1, W.-- AV] + 1, AW + 1 - V, V- F(X), the list will contain the
pairs (Ao, 1), (W, 2), (A3,0). Now let us see what happens when we process a
partial behavior L1, ..., L,, where L, labels a statement (10.7). We are to build
from it all partial behaviors of length n + 1. Since we have a list of all variables
with values in , we can determine at this point whether v @ w or not. If so, we
get the single new partial behavior L1,..., L,, L2. If v ( w, we get the single
new partial behavior L1, ..., L,, L3. But we do not add both new partial behaviors
to the list.

Hence we see that, by keeping a list of variable-value pairs where the values
are in , we can determine which of the two paths the finite behavior will take
when processing a statement (10.7), irrespective of the actual interpretation of
predicates, functions, and input values, i.e., in the free interpretation.

When building the computations from a finite behavior, no extra processing
need be done with statements of the form (10.7).

(10.8) ASSERTION. For every effective functional F EF there exists a scheme
S in P(x,0).

Outline of construction. F is given by a recursive function f(i) which, given
an integer i, returns the ith computation in some form. S is given in Fig. 9. By
using Minsky’s two counter machine [9, p. 255], f can be implemented using
integer arithmetic (+, -, =) and two simple variables, which P(1,0) allows. Let
us assume that the computation produced by f is coded in Polish postfix, to be
interpreted. For example, input variables X1,..., X, could be represented by
integers 1, ..., n, function names F1, "", Fm by n + 1, ..., n + m, and so forth.
Second, assume’he whole computation is coded as a single integer, in one variable.
Thus, if the scheme uses X1, F1, F2, and predicates P1 and P2, the expression
FI(X1, F2(X1)) in Polish notation would be X1, X1, F2, F1. In coded form this

call f(1) to construct the Ith
computation in a suitable
form in simple variable C

evaluate computation in C

yields a value
in variable V

HALT (V)

yields no value

I-I+1;
empty pds PD

FIG. 9
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would be the sequence of integers 1, 1, 3, 2, and to represent it as a single integer
we write it as 21 * 31,53 , 72.

To evaluate the computation C, we need only decode each name, in order,
and execute the function calls. Here is where we use the pds PD; we need it to
hold the temporary values generated. In general, we cannot put a bound on the
number of temporaries needed in the evaluation of an expression of the effective
functional; if we could, the scheme could be written in P_.

(10.9) COROLLARY. Let S be any scheme in PAe" Then there exists an equivalent
scheme $1 in P_ if and only if there exist an equivalent effective functional f and
an integer n such that all the expressions and propositions off’s computations can
be evaluated using at most n variables to hold temporary results.

Proof Suppose $1 exists. Construct an equivalent functional f, using a con-
struction similar to that used in (10.6). The proposition and expressions off
correspond to expressions and predicates used to calculate values in Sa, and thus
can be evaluated using only as many variables as S uses.

Suppose an effective functional f exists with the required property. Then
construct $1 using the construction in (10.8), where we can use simple variables
instead of a pds to hold temporary values.

(10.10) THEOREM. For every scheme S in P(1,o)_ there exists an equivalent
scheme in PAe.

Proof We can certainly simulate the single pds in PAe using an array. Now,
S uses integer arithmetic using the natural numbers . However, PA has the
ability to do the same arithmetic using , and we need only identify with .
(The operation + and relation (R) are defined in PA, and by Theorem (4.3) we
can simulate -.)

11. Multischemes and nondeterministic effective functionals. The theory of
schemes with total inputs is adequate to model most situations arising in the theory
of programming languages (as opposed to pure recursive function theory). In
place of partial inputs one allows as inputs subroutines written in the schema
language. But the basic inputs to all schemes are total.

Within this theory, we have discovered few "naturally" occurring classes of
schemes: P, PR, and PAe, with PA being noneffectively equivalent to PA. When
beginning our research, we originally thought we would have PA < PR. The
fact that PA is universal and moreover is noneffectively equivalent to PA is remark-
able.

A subsequent paper will discuss multidimensional arrays, and will also
describe a few other naturally occurring classes of schemes, mostly having to do
with pushdown stores.

There are sound mathematical reasons for considering partial functions and
predicates as inputs to a scheme. In particular, the theory of recursive functionals
over , as developed by Kleene and others, allows such inputs, and one wants a
comparable theory of schematic functionals (i.e., of schemes). Also, in any attempt
to generalize various theories about recursive functions, such as abstract com-
plexity theory, to the level of recursive functionals, one naturally considers partial
inputs.
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Moreover, there are situations in the theory of computing which can be
nicely modeled using partial inputs. For instance, the relative computing times of
different function inputs may be such that one program appears partial relative
to the other. Or, we may wish to consider function inputs coming via communica-
tion with humans. The machine asks for the value of f(. at x. If the human is
unable to respond, the result is like a call to an undefined value off(. ).

Given the need for a theory of sdhemes with partial inputs, what is the
appropriate model? The basic ideas for such a model can be found in the early
work of recursive function theorists. More recently, Strong [73 presented his
effective functionals as one machine independent model. We present a procedure-
oriented model and prove the equivalence of the two models. The length of this
paper precludes a full discussion of these very interesting schema formalisms,
and we shall undertake a full presentation elsewhere.

We add to PAe the facility to process basic function and predicate calls in
parallel. When a statement like v f(... is executed, as soon as execution off
is begun, we go on to execute the next statement in the scheme. Thus, f and the
scheme are executing simultaneously. We do not know how long f will take to
store its result in v (or whether it ever will), so it is only fair to require thatfindicate
in some manner when it is finished.

This new type of scheme we call a multischeme.
(11.1) Syntax ofmultischemes. Programs are written as in Pae, with the follow-

ing changes in statement types:
(1) IF p(...) THEN [1:3 (S) ELSE [l:] (S) is not allowed.
(2) The following additional types are allowed (the first two replace the state-

ment type deleted; the last one, the "wait" statement, is used to tell if a function
evaluation is finished):

(i) v +-- p(e 1,..., eRp
(ii) IF v THEN [/:] (S) ELSE I: (S)

(iii) IF THEN [1:] (S) ELSE [1:] (S)
(11.2) Semantics of multischemes. Multischemes may use a new value, true,

which is not in the domain D and is not in N. Secondly, each variable v consists of
two parts:

(11.3) conventional value or true or true

v

The part labeled v holds the usual value assigned to a variable, while is used only
to indicate function evaluation completion. Of course, is initially f.

Finally, we require that evaluation of a basic function or predicate f(x) be
performed in a unit of time tf(x)e {0, 1, 2, 3, ..., oe }. Thus, if f is partial when
applied to x, tf(x) oe. We shall in a moment assign (rather arbitrary) units of
time to the execution of statements of a multischeme. If we execute v ,-f(x)
where tf(x) is 5 (say), then the value off(x) is stored in v, and is set to true after
5 more time units have lapsed.

Let us now describe the execution of statements in a multischeme.
(1) null statement. Takes 1 unit of time to execute.
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(2) v +-- w, v ,-- 0, v - w + 1, GOTO l, HALT(w). Each takes unit of time
to execute. They are executed as in Pae only the "conventional value" part of v
or w is changed or referenced.

(3) v f(...), v +--p(...). Each takes 1 unit of time to execute, v and
are both set to f, and execution off or p is begun. Execution of this statement is
then finished.

Suppose tf(... n. Then just after n time units have lapsed, the resulting
valUe off(... is stored in v and is set to true; similarly for the execution of
v - p(... ). Here p produces the value true or f (which stands for false).

(4) IF v O w THEN [1:] (S)I ELSE [/:] (S)2
IF v THEN [1:] (N) ELSE [/:] (S52
IF 5 THEN [1:] (S) ELSE [I:] (S)2

Each of these takes time unit to evaluate the proposition and to decide whether
(S) or (S)2 should be executed. The first one is executed exactly as in Po.
With the second, (S) is executed next if and only if the "conventional value"
part of v contains true otherwise, (S) 2 is executed. With the last, (S) is executed
next if and only if the part of variable v is true; otherwise (S) 2 is executed. This
latter statement can thus be used to wait for a value to be computed by a function
or predicate, as illustrated in Example (11.4).

The following scheme, considered in PA (with total functions and predicates),
returns the value x if and only if p(Fi(X)) is true for some > 0. Considered as a
multischeme, however, the result may depend on the timing of the function
evaluations, since the value P(A) may not be stored in V in time for the conditional
statement to execute properly.

(X): A F(X);

LOOP: V - P(A);

IF V THEN HALT(X);

A ,- F(A); GO TO LOOP

(11.4) Example.

(X): N - 1; A[1] ,-- F(X);

LOOP: IF A[N] THEN

BEGIN V[N] P(A[N])

A[N + 1] ,- F(A[N])

N*-N+I

f possible, begin
omputation of
(FN(X)) and FN + I(X).

END;
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I-1;

WHILE I -z N DO
BEGIN IF VII THEN

IF VIII THEN HALT(X);

I-I+1

END;

GO TO LOOP

If P(U(X)) is com-
puted and true for
some < N, then HALT.

Scheme (11.4) uses an array A to store FI(X), F2(X), and an array V
to store P(FI(X)), P(Fz(X)), The statement LOOP begins computation of
p(FN(X)) and F+ I(X) if and only if Fu(X) has been computed. The WHILE
statement HALTs when some computed value p(Fi(X)) is true. Obviously, then,
the scheme HALTs and outputs value X if and only if

p(Fi(X)) true for some >__ 1;

otherwise it does not stop. Note that the output is finitely independent of the times
tF( and tP( ).2

(11.5) To execute a multischeme S, then, we are given not only input values
d l, ..., dt, functions b, ..., qS, and predicates H, ..., Hm, but also implicitly
a time set

T {tb,, ..., tep,,tl-I,,..., tn,,}

which satisfies the conditions tdpi(X). if and only if ff)i(X), and tHi(X)$ if and only
if Hi(X)$. s (In the case that {i} are partial recursive functions, we might want

{tbi} to be Blum complexity measures.) We interpret v - dpi(X) to mean that the
value gets stored in v just after tdpi(X) more time units have lapsed.

The semantics we have proposed for multischemes tacitly assumes that
function and predicate inputs are supplied as processes which can be "executed"
in some manner. The details of this assumption are not necessary; all that we re-
quire is the associated time set.

It is interesting to compare this process interpretation with the usual set-
theoretic interpretation of functions. A partial function b is simply a set of ordered
pairs, S {(x, y)lb(x) y}. We might then be given 4) as a set. To compute with
a set we ask, "is (x, y) S?", and we assume that an "oracle" can always answer
this question. If the domain D is enumerable, say D , then we can "compute"
b(x) from S as follows: ask (x,O) S, (x, 1) S,..., (x,n) S,.... If
b(x) y, then for this process tdp(x) y; and if b(x) is undefined, then so is tdp(x).

If D is not enumerable, this process fails, but the concept of a time set is still
applicable.

Byfinitely independent of the times tF(.), we mean it does not matter whether tF(.) 1, 2, 3, .., n
for any finite n. It does of course depend on whether tF(.) is finite or infinite.

b(X)+ means that b halts on X.
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(11.6) DEFINITION. A multischeme is well-defined if and only if the output
value of the scheme is finitely independent of the time set T. The class of well-
defined multischemes is denoted MPAe.

We claim that MPAe is a universal scheme formalism over the domain of
partial functions and predicates. A reasonable notation for the class of functionals
computed is z(MPAe,.(D),@,(D)). Previously, z(PAe,D was used for z(PAe
-(D), -,(D)), where -(D) are the total functions over D and -,(D) are the total
predicates over D. To substantiate our claim of universality we want to show that

(EF, (D), ,(D)) :(MPA, (D), ,(D))
for all D. We write this as EF

_
MPAe (on partial interpretations).

(11.7) ASSERTION. EF <= MPAe.
Let f be the effective procedure which enumerates the computations of an

effective functional. The equivalent S in MPAe is constructed in the same fashion
as that described in 10 when we asserted that EF =< PAe it is outlined in Fig. 10.
S contains a loop which constructs the computations in Polish postfix form,
stored as single integers in All], A[2],.... Between the construction of com-
putation A[I] and A[I+ 1], we proceed to evaluate as much as possible the
computations A[1], ..., A[I].

Construct Ith
computation
and put it in
AII]

Initialize for
evaluating A[I]

Check the progress of
evaluation of A[1]
A[I], in order, and
evaluate further if possible

A computation
produces a value in V

HALF(V)

FIG 10

A more detailed description of box 4 of Fig. 10 is in order. We use a counter J
to check the computations AI1], A[2],...,A[J],-..,A[I]. We use a two-
dimensional array4 B, where row BJ, 1], B[J, 2, is used as a stack to store
temporary results of computation J. When we first "check the progress" of a
computation, we begin evaluating it, and continue until a basic function or pred-
icate must be evaluated. We then begin this evaluation and stop working on the
computation.

The next time we have to "check the progress" of the computation, we see
whether the basic function or predicate has returned its value. If not, we can do

4 We cannot of course use multidimensional arrays in MPAe. We leave it to the reader to show
how they can be "simulated".
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nothing more; if it has, we then continue evaluating the computation until another
basic function or predicate.must be evaluated.

All computations (of the effective functional) which produce a value, produce
the same value. This means the multischeme we have described is well-defined
because it only outputs the value of a computation.

(11.8) ASSERTION. MPAe ____< EF (on partial interpretations).
Let S be a well-defined multischeme. Then the result of execution does not

depend on the time set T. Given a time set T we can clearly produce an effective
functional for S and that time set (as we did in 10), but the computations in it
depend on the particular time set used.

To produce the effective functional equivalent to S, we systematically vary the
time set T and record all possible finite behaviors of S, for all time sets T. For
each of these finite behaviors we get a computation of the effective functional
as in 10. Clearly this effective functional is equivalent to S.

(11.9) Example. We give a scheme in MPAe which computes leaftest (Example
(6.5)) assuming that P, R and L may be partial. The scheme uses an array A to
hold values of the nodes and a corresponding array B to hold the values P (node).
We continually process nodes generated so far, as follows:

IF the value of the node has been computed THEN
IF we have not begun to compute P (node) THEN

BEGIN begin computing P (node);
begin computing L (node) to get a new node value;
begin computing R (node) to get a new node value;

END
ELSE IF P (node) has yielded an answer THEN

IF P (node) is true THEN HALT(X)

(X): A[0] - X; B[0] - P(X);

A[1] ,--- L(X); B[1] 1;

A[2] R(X); B[2] 1

T+-- 2;

LOOP:IF B[0] THEN IF B[0] THEN HALT(X);
I1;
WHILEI_< TDO

BEGIN IF A[I] THEN

IF B[I](R) 1 THEN

BEGIN B[I] P(A[I]);

T- T + 1; A[T] - L(A[I]); BIT] 1;

T T + 1; AT R(A[1]);B[T] 1;
END

(Start root node going)

(Start computing first leafs)

(Process root node)

(Process 1 node at a time)
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ELSE IF B[I3 THEN IF B[I] THEN HALT(X);

I-I+1

END;

GOTO LOOP

(11.10) To conclude we want to sketch very briefly how the example of (11.9)
can be used to show that PAe < MPAe, i.e., PA is not universal on partial inter-
pretations, but MPA is.

Strong 7] defines a subset of EF called the deterministic effective functionals,
EFa. Briefly, F is deterministic if and only if its computations can always be
evaluated in the order enumerated; that is, if computation is the first computation
to yield a value for the given inputs, then in all previous computations 1, 2, ...,

1 in the recursive enumeration defining F, all predicates and expressions up
to the first false predicate are defined. Let EFa denote these functionals.

Strong calls a functional inherently nondeterministic if and only if there is no
deterministic functional equivalent to it. He then shows that leaftest in which P
is partial but L and R are total (a special case of (11.9)) is inherently nondeter-
ministic, and thus not computable in EFa.

We can apply this result by relating EFa to our classes. Note that there is a
natural way to interpret PA on partial inputs. First we modify PA making the
changes of (11.1) except for (2) (iii). Clearly these changes are inessential. Next, we
say that whenever an assignment V - F(... or V - P(... is executed, control
waits until a value is returned before executing the next statement. If the operator
F or P is partial, then the scheme is said to jam because control never passes the
assignment.

To be precise about this interpretation we define a canonical mapping of
PAe into MPAe. Namely, for each assignment statement V F(... (or V P(... ))
of scheme S in PAe generate a new label L and replace the statement by

BEGIN V- F(...);

L’IF V THEN ELSE GOTO L END

We now identify PA over partial domains as the image of PAe in MPAe under this
mapping.

Relating PA to EFa is now easy, given the methods of 10 and this section.
The reader can check the following assertion.

(11.11) ASSERTION. EFd PA and PAe EFd.
Thus Strong’s deterministic effective functionals correspond to the natural

interpretation of PAe schemes on partial inputs.
Now applying Strong’s result that leaftest is inherently nondeterministic,

we get the following corollary.
(11.12) COROLLARY. PAe < MPAe.
On total interpretations all of the classes PAe, MPAe, EFd and EF coincide.
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On partial interpretations we get the following diagram (the notation A B
indicates an effective translation from A into B).

EFt----*MPae
EFd}PAe

Appendix. The Appendix contains details of some of the constructions out-
lined in the paper. When reading them, refer back to the general outline for helpful
comments.

(6.1) THEOREM. Given a scheme S in PR, one can construct an equivalent scheme
S’ in PAL"

Construction.
Step 1. (Generate initialization statements): Insert before the main (body)

of S the statements to initialize the global counters TOP and AA: TOP ,-0;
AA 0;

Step 2. (Change simple variables to subscripted variables): Change each
simple variable V in each function definition (body) to A[AA + i].

Step 3. (Change each HALT): Generate a new variable RV and change each
HALT(v) in each function definition (body) to

BEGINRV,--v; GOTOA[AA+(p+ 1)lEND

where the function definition uses p variables.
Step 4. Change each function heading f(l/, ..., Vgy): to ’Lf :’ where Lf

is a new unique label.
Step 5. (Change each function call): For each nonbasic function call

within the complete scheme, generate a new, unique label RL, and replace the
statement with the following"

BEGIN TOP ,-- TOP + 1;

A[TOP] ,-- AA;

A[TOP+(p+ 1)] -RL;

A[TOP + 1] - Vl;

A[TOP + Rf] VRy

A[TOP + (Rf + 1)] -OMEGA;

A[TOP + p] ,--OMEGA;

AA - TOP;

TOP - TOP + (p + 1);

(part of action 1)

(action 2)

(action 3)

(action 4)

(action 5)

(rest of action 1)
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GOTO Lf
RL" AA AI-AA]; v - RV

END

(jump to function)

Return here

where Lf is the label which replaced ’f(V1, .., VRj):" in Step 4; and where the
function definition off used p simple variables.

(7.2) LEMMA. P(z,m) =< P(2,1)for m >_ O.
Proof. Let S in P(2,m) use markers M1,..., Mm. The equivalent scheme S’

in P(2,2) uses marker M. Each marker Mi in S is represented in S’ by m + values"

M M,f,, ...,,, Q, M,f, ...,
i-1 m-i
times times

Each simple variable v in S is represented by m + variables v, v l, v2, ..., v,, in S’.
To translate S into S’ perform the following steps"

1. Change each statement v +- w into

BEGIN v ,- w; v - w ;... Vm - Wm END

2. Change each statement v Mi into

BEGIN v - M; v ,-- OMEGA;... v - OMEGA; v M END

3. For each statement

IF v Mi THEN $1 ELSE $2

change the statement to

IFv M and vi M

THEN $1 ELSE $2

4. Change each statement (where PD is a pds) PD - v

to BEGIN PD ,- v ;... PD Vm; PD - v PD *- M END

5. Let W be a new, unique variable. Change each statement

v*-PD

to BEGIN I/V OMEGA; If W # M after the pop,
W - PD; "L-the pds PD was empty. 1

IF W M THEN

BEGIN v - PD; u -- PD v +- PD END

END

(7.4) LEMMA. For any scheme S PR there exists an equivalent scheme S1 in
PpdL which uses only one pds.

Proof. Assume without loss of generality that each function (body) and the
main scheme (body) of S all use p variables VI,..., Vp, where V,..., VRS
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are the normal parameters (Rf 0 for the main program). $1 uses one pds PD.
We construct S1 as follows, using new variables A1, "’", ARf, RET, and R V.

Step 1. Change each nonbasic call Vi -f(vl,"’, VRf) to

BEGIN A1 vl ;"" ARf - l)Rf;

PD - Vi PD Vv
PD RL;

V --A1;... Vf ARf;

VRf + ",- OMEGA;... V, OMEGA;

END

GOTO Lf
V - RV;

[Save arguments

[Put variables on stack]

[Return label stacked]

[Initialize formal
parameters3

[Fix rest of local
variables]

[Jump to functionl
[Get value of function

Step 2. Change each HALT(Vj) within a function definition to

BEGIN RV - Vj;

RET - PD;

Vp PD V1 - PD

GOTO RET

END

[Value returned]

[Label to return to]

[Restore old values]

[Return]

Step 3. Change each function heading ’f(V1,"’, VR)" to "Lf :". This
results in an equivalent scheme $1 in PpaL, where one pds PD is used.

(8.3) LEMMA. PAM PpdsM"
Proof. Given S in PAM, we give the steps for constructing S’ in PpdM equiva-

lent to S.
Step 1. Let scheme S be

(w 1, w,,)" (body)

where wl, "’", w, are simple variables. Change S into

(IN1,’.., IN,,)" w IN1;"" Wn IN,; (body)

where IN1,..., INn are new simple variables. Second, suppose the function or
predicate with the largest rank has rank m >= 1. Generate m new simple variables
ARG1, ..., ARGm, and a new simple variable Vo. Replace each statement

v -f(vl,’", VRf)
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by

BEGIN Vo - vl ARG1 Vo

Vo vRy; ARGRs +-- Vo
ARG1 f(ARG1, ..., ARGRs); Vo ARGo; v - Vo

END

Replace each statement

IF p(v, ..., vp) THEN S ELSE S2

by

BEGIN Vo - Vl ARG Vo;

Vo vtp; ARGp Vo;

IF p(ARG1, "’", ARGp) THEN $1 ELSE $2

END

Change each statement HALT(v) to

BEGIN Vo ,-- v; HALT(Vo) END

Obviously, these changes yield an equivalent scheme $1. Again, the point of the
transformations is to produce a scheme in which the input variables and arguments
to functions, predicates, and HALTs need not be considered as pds’s, ever. (They
never contain a marker m or a value in . If they do, we use just a single asterisk *
in PAM.) Hence, the variables ARGi, INi, do not have to be represented by push-
down stores in S’.

Step 2. We leave it to the reader to show that the $1 scheme can be further
transformed to yield an equivalent PA scheme $2 with the following 12 types of
simple statements, where T is one of the variables ARG or INj, v and w are
simple variables which are not ARGi or INj, and m is a marker:

(1) T +- v
(2) v T
(3) v w
(4) v+--w+
(5) v - rn
(6) v +-- A[w]
(7) A[v] w
(8) Tf(ARG1,..., ARGRy)
(9) IF p(ARG, ..., ARGup) THEN $1 ELSE $2

(10) IF v m THEN $1 ELSE $2
() GOTO
() v0

(where v and w are not the same)
(where v and w are not the same)

(where v and w are not the same)
(where v and w are not the same)
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If we remember that each variable (except ARGi, INj and V0) will be repre-
sented by a pushdown store, we see that statements must be transformed accord-
ingly.

Step 3. (Transform simple variables to stores)" Let M0 be a new marker.
Consider each simple variable v (except the ARGi, INj and Vo) to be a pushdown
store. For each such v insert at the beginning of the scheme the statements

v - Mo; v +- OMEGA

This will initialize the store to f. Each store always will have Mo as thefirst element,
and will always contain a value.

We assume we can write a (compound) statement to empty a store v com-
pletely, and another to copy a stack w to a completely empty store v, without
changing w. Let us assume we denote these by

EMPTY(v) and COPY(w, v).

We now show the transformation of statement types (1)-(5), (10), and (12); TEMP
is a new, unique simple variable"

(1) BEGIN T - v; v ,- T END
(Remember T can only contain values in D, and this value must be at the
top of the store v.)

(2) BEGIN EMPTY(v); v Mo;v - T END
(3) BEGIN EMPTY(v); COPY(w, v) END
(4) BEGIN EMPTY(v); COPY(w);

TEMP ,-- v;v ,- TEMP;

IF TEMP * THEN v TEMP

ELSE BEGIN EMPTY(v); v - Mo TEMP - *"

END

v TEMP; v - TEMP

END

(Rememberv+ =0+ lifvCN.)

(5) BEGIN EMPTY(v); TEMP +- m; v -- Mo; v TEMP END
(10) BEGIN TEMP -- v; v - TEMP;

IF TEMP m THEN $1 ELSE $2

END

(12) BEGIN EMPTY(v); v ,--- Mo; v - * END

Step 4. The only statements which have not yet been transformed into state-
ments in PpaM are those of types (6) and (7) which reference arrays. We now show
how arrays are represented.

Let ’,’ be a new, unique marker. Each array A in S is simulated in S’ by a pds
PD. Let A be as in Fig. 5a. Then PD is as in Fig. 5b. Thus, array elements of A are
separated in PD by the marker ’,’.
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Note that, during execution, if the "highest" array element assigned to thus
far is A[i], then the corresponding pds PD in S’ will describe exactly the array
elements A0], ..., Ai].

Now, for each array A used in $3 (the result of Step 3), generate a pds PD
and insert the statements

PD - M0; PD ,-- OMEGA;

at the beginning of $3. Similarly, initialize three temporary pds’s PDT1, PDT2,
and PDT3.

The statement

v (v, w not the same)

is translated into a compound statement, which
(1) puts PD into store PDT1, upside down without changing PD;
(2) copies the store w into PDT2 (EMPTY(PDT2); COPY(w, PDT2));
(3) empties the store v (EMPTY(v));
(4) deletes "array elements" from the store PDT1 until the one described by

PDT2 is on top. Remember, array elements in the stack are separated by commas
’,’, and PDT2 contains a sequence of 0 or more asterisks ’*’ to indicate how many
array elements to delete;

(5) moves the top array element from PDT1 into v.
If the number of asterisks in PDT2 is greater than the number ofcommas in PDT1,
then we are executing v .-- A[w], where A[w] is undefined. In this case we put f2
into v.

Similarly, a statement

A[w] v (v, w not the same)
is translated into a compound statement which

(1) puts PD into the store PDT1 upside down, and empties PD;
(2) copies w into PDT2, without changing w;
(3) copies as many "array elements" from PDT1 back into PD, upside down,

as there are asterisks in PDT2;
(4) deletes the top array element from PDT1 (this is A[w]);
(5) copies v onto PD; adding a comma ’,’;
(6) moves the rest of PDT1 back to PD (upside down of course).

If, in step (3), there are more asterisks in PDT2 than commas in PDT1, extra
array elements f2 are put into PD.

We leave the programming details to the reader.
(9.1) Construction of $1 in case of infinite v-autonomous behavior. We already

gave a program to construct S in case of one function of rank w. We now outline
how to construct $1 inductively on the maximum rank of the functions and pre-
dicates. A more general discussion of such "programming by induction" is given
in [8].

Suppose there are functions fa, ..., f, and predicates P1, "’", Pk of rank 1,
and that the input variables to the original scheme S are V, V2, "., Vl. Then we
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write the following statement"

BEGIN 1 *- 0;

K *- 0; A[K] *- OMEGA;

K *- K + 1; A[K] *- V1;

(a.1) K *- K + 1; A[K] *- V,

LOOP’/*- I + 1;

Initialize

[test predicates of rank 1 on A[I 1]];

K *- K + 1 A[K] *- fl(A[I 1]);

K *- K + 1; A[K] *- f,(A[I 1]);

GOTO LOOP

END

We leave the details of the tests of predicates of rank 1 to the reader. Initiali-
zation puts all initial values into array A. Variable K always indicates how many
values are in A. This scheme could have been simplified by putting the incrementa-
tion of I just before the GOTO LOOP statement;it has been written this way in
order to facilitate the induction process.

If there are no functions of higher rank, then clearly the above statement
performs as desired. All possible values are put into the array A, while I is used to
sequence through A testing these values.

Now suppose we have a statement $1 which "takes care" of all functions
and predicates of rank m > 0 or less. Its form is:

BEGIN I *- 0;

S1;... ;Sn;
LOOP:I,-// 1;

(A.2)

I Initialization

[test predicates of rank m on v l, V2, Urn]

K *- K + 1; A[K] *- f";(vl, U2 ,’’’, Vm)

Urn)K *- K + 1; A[K] *- fk,.(Vl, v2,

GOTO LOOP

END

The assumptions are that A will hold all possible values, K indicates how many
values are in A, the $1,..., S, are initialization statements, I is changed only
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where explicitly indicated, and that any given value is put in A at some time. All
possible m-tuples (v1,’.’, Vm) will be used as arguments to f]’, ..., fk at some
point. Note that the statement programmed for rank 1 satisfies these requirements
and has form (A.2).

Suppose, in addition, that the original scheme S used predicates and func-
tions fp,..., fq of rank m + 1. Then we change (A.2) to use new, unique arrays
AD, AS, A1,..., Am, and simple variables I1 and J1. A1, ..., Am will hold all
possible m-tuples J1 is their counter. AD, AS and I1 will be used as in the locator
of rank 2 to reference, at each step, a value A[I1] and an m-tuple AlIAS[Ill],...,
Am[ASI1]]. S1 and $2 are new simple variables.

We change (A.2) to

BEGIN I ,- 0; Old

$1 S, initialization

AI[0] OMEGA;.. ;Am[0] OMEGA;

AD[0] 0; AS[0] - 0;

I1 - 0; J1 +-- 0;

LOOP’/,-- I + 1;

[test predicates of rank m on v, v2, ..., Vm]

New initialization

K - K + 1; A[K] +--f"(v,..., Vm);

l)m).K - K + 1; A[K] - ft,(Vl,
J1 + J1 + 1; AD[J1] J1 1; AS[J1] 0;Put new m-tuple

inA1 Am.
AI[J1] v; Am[J1] Um;

As before

Get subscript for
_rank m + work.

Fix 2nd subscript
and go down
diagonal.
Test rank m +
predicates.

S1 I1;$2 AS[I1];

AS[I1] - AS[I1] / AD[0] AS[0]

I1 +-- AD[I1]

[test predicates of rank m + on A[S1],

AI[S2], ..., Am[S]]
K - K + 1; A[K] - fp(A[S1], AI[S2],

Am[S2]);

K +- K + 1; A[K] fq(A[S1], AI[S2],

Am[S2]);

GOTO LOOP

Get

new
function
values.

END
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Note first of all that the transformation does not change any of the original
statements and, since none ofthe original variables are changed by new statements,
that values on functions of rank m or less are calculated and stored as before. This
new statement has form (A.2), where vl A[S1], v2 AI[S2], ..., Vm+ Am[S2].
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SOME UNDECIDABILITY RESULTS FOR
PARALLEL PROGRAM SCHEMATA*

RAYMOND E. MILLER-

Abstract. Some theorems showing undecidability for computational commutativity, boundedness,
termination and determinacy ofparallel program schemata are proved. These results are then compared
with contrasting decidability results in [1] showing that the deletion of the hypothesis of repetition-
freeness from the decidability theorems produces undecidability.

1. Introduction. In attempts to better understand the structure of computer
programs, and to circumvent the well-known undecidability results concerning,
for example, the termination and equivalence of programs, people have turned to
modeling certain restricted aspects of programs for which some more positive
(decidability) results can be obtained. The determination and formulation of the
important properties of program structure and behavior is of interest in itself.
But in addition, results that establish boundaries between when such inherent
properties are decidable or undecidable provide a fuller understanding of what
modifications and simplifications of programs can be carried out in an algorithmic
fashion.

One of these approaches, which uses the program schemata model, is aimed
primarily at studying the control flow or sequencing aspects of programs rather
than the particular functions that a program computes. Among the various
schemata formulations, Ianov 23 (also see Rutledge 33) showed that a certain
type of equivalence between schemata was decidable. Luckham, Park and
Paterson [4] showed that adding a little more structure to the memory, say by
having two or more distinct memory locations, causes almost any reasonable type
of equivalence to be undecidable.

In [1] Karp and Miller introduced the notion of parallelism into schemata
and extensively studied the property of determinacy for such schemata. Intuitively,
determinacy means that the values being computed are not dependent upon the
relative sequencing between the operations being performed in parallel. It was
shown that determinacy was decidable for a large class of parallel program
schemata. In addition, it was shown that equivalence was undecidable for
indeterminate parallel program schemata. In a recent paper by Itkin and
Zwinogrodski [5] the construction of Karp and Miller to show undecidability
for parallel program schemata equivalence was employed, together with the
implementation of a "reset" operation, to show that equivalence was undecidable
even for determinate parallel program schemata. In addition Itkin and
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previously introduced in a different context by Rosenberg [6].
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Zwinogrodski showed that state accessibility and the existence of a finite compu-
tation were also undecidable.

In this paper we extend these undecidability results to detecting computational
commutativity, boundedness, termination and determinacy. In particular, the
unsolvability of determinacy holds for finite state schemata (Theorem 4). This
answers negatively a problem posed in [1] concerning the existence of an effective
test for determinacy for the class of finite state schemata. In 5 we compare these
results with the decidability results of [1], and show that the deletion of the single
hypothesis of repetition-freeness provides a boundary between decidability and
undecidability for these properties of parallel program schemata.

2. Preliminaries. To make this paper fairly self-contained we review some of
the basic definitions of parallel program schemata [1].

A parallel program schema 5 (M, A, ) consists of a set M of memory
locations; a finite set A of operations" we associate with each a A a positive
integer K(a) called the number of outcomes of a, and sets D(a)

_
M and R(a)

_
M

called the domain locations and range locations of a respectively; and a transition
system control - (Q, qo, Z, z), where Q is a set of states, qo is a designated
initial state, Z 2;i U Zt is the alphabet, where Ei 1,3 aA {2} is the set of initiation
symbols and Et [.J aA {al, "’, aKa)} is the set of termination symbols, and r is a
partial transition function from Q x 2; to Q which is total on Q x

An interpretation J ofa schema ,9 is given by" (a) a function C which associates
a set of values C(i) with each M, (b) an initial memory contents Co Xit C(i),
and (c) for each at A, two functions Fa XieO(a C(i) --> XieR(a) C(i) and G, Xieo(a) C(i)

{al, aK(a) }. For a performance of a, F, determines the results to be stored
in locations R(a) and G, determines the conditional branch to be taken.

A finite or infinite word z over E is called an -computation for 5 if for
C, Co, F, and G, defined by "(i) every prefix ya of z with tr e Z satisfies the constraints that r(qo, ya) is

defined, 2 and if a is a termination symbol for a A, then the number
of initiation symbols fi in y is greater than the number of termination
symbols in y for operation a;

(ii) if z is finite, then for all a Z, condition (i) is not satisfied for za;
(iii) if x is a prefix of z and a 2; with the property that for every y such that

xy is a prefix of z it follows that xya satisfies (i), then for some y’, xy’tr
is a prefix of z;

(iv) if xa is a prefix of z and a Z, where a is the ith termination symbol of
operation a in xa, then G, evaluated after the ith

Condition (iii) is called thefinite delayproperty and implies that the performance
of an operation cannot be indefinitely delayed, or forced to be "infinitely slower"
than the performance of other operations.

An J-computation z thereby represents a sequence of initiations and
terminations of operations which is consistent with the schema control #- and
the outcome function G,. The memory locations are read and changed by the
sequence of initiations and terminations. Upon the initiation of an operation a,

The transition function v is extended in the usual manner, namely v(q, ya) v(r(q, y), a).



SOME UNDECIDABILITY RESULTS 121

the values in locations D(a) are used to compute new values in accord with
functions Fa, and to determine the outcome of a defined by Ga for this performance
of operation a. Upon termination of the operation a the values computed by Fa
are stored in locations R(a). In this way an J-computation z defines a sequence of
contents for each cell M, and we denote this sequence by fi(z). A more detailed
definition of computations and the resulting sequences of memory values is given
in [1], but this description should suffice for our current purposes.

We are interested in several properties of schemata which now can be defined.
A schema is called determinate if, whenever x and y are J-computations for the
same interpretation J, f2i(y) f2(z) for all i M. Two schemata
and 5’ (M, A, -’) are called equivalent if for each M and each interpretation
J,

{f2(y)ly is an J-computation for ,9} {f2(z)lz is an J-computation for 9’}.
A schema ,_9 is called finite state if Q is a finite set. A schema ,9 is called bounded
if there is a constant K such that for every interpretation J any prefix x of any
J-computation has a number of initiation symbols which is no more than K
greater than the number of termination symbols in x. If K can be taken as 1,
then the schema is said to be serial.

A schema

_
is computationally commutative if whenever for some given

interpretation J, xrcr and xart are prefixes of J-computations, then r(qo, xra)
r(qo,XarC). ,9 is repetition-free if whenever an J-computation contains two

initiation symbols ofthe same operation, as in v?tw?x, then w contains a termination
symbol of an operation c for which R(c) (’1 D(a) . Finally, an operation a A
is said to be terminating iffi occurs only a finite number oftimes in each computation
of.

Other properties of schemata being persistent, commutative, permutable,
and lossless are defined in Ill, and these terms appear occasionally in this paper.
The definitions are omitted, however, since they are not essential to understand
the results in this paper.

3. The construction for undecidability. The elements of the constructions we
use are taken from 1] along with the "reset" idea of 5]. In those papers, as well
as here, undecidability is proved by using the Post correspondence problem.
The form of the Post correspondence problem we use can be stated as follows"
Given two n-tuples X Xl, x2, ..., x, and Y yl, Y2, Yn of words over the
alphabet {bl, b2}, does there exist a sequence of indices il, i2,’’’, ip such that

xlxi2...xip yly2...yp? This problem is denoted as P(X, Y). We show that
the properties we wish to study for schemata are decidable only if this class of
Post correspondence problems is decidable. Since undecidability holds for this
class of problems, this is sufficient to prove undecidability for the schemata
properties.

For any particular Post correspondence problem P(X, Y) we construct an
,(X) and ,9(Y) as in [1]. 3 For ,_9(X)and 5(Y), M {1,2}, A {a, b}, D(a)

Actually, the 5(X) and O(Y) constructions are slight variations from those shown in Fig. 4.1
of [1], correcting an error there, to insure that ?ta3b is not a computation that reaches an end state.
Also, the sink construction of Fig. 3 differs from [1] in order to provide serial operation.
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R(a)= {1}, D(b)= R(b)= {2}, K(a)= K(b)= 3. Since neither operation
affects the domain location of the other, the sequence of outcomes of a and b
depends only on the interpretation and not on how the performances of a and b
are interspersed. (X) and b(Y) are constructed in an identical manner so we
describe the construction of(X) only. We say that an interpretation is consistent
with (X; i, --., ip) if and only if"

(i) if a could be executed repeatedly, beginning with the control in state q0

and the initial assigned contents of memory location 1, the sequence of
outcomes would have as a prefix

a/1 1a2a/12- la2 a/x/,- la2a3

and
(ii) if b could be executed repeatedly, beginning with state qo and the initial

assigned contents of memory location 2, the sequence of outcomes would
have the prefix

XiXi2 Xipb3.

Thus, 5(X) is designed so that under a consistent interpretation the outcomes
of a determine a sequence of indices and the outcomes of b determine the word
generated from X by this sequence of indices. The actual computation for 5(X)
under a consistent interpretation would have, performances of a and b interspersed
so that the sequence of outcomes would be

i-1 ailP- la2xipa3b3a’ la2xila a2xi2

Fhe control for (X) to accomplish this is sketched in Fig. 1. If, for example,
Xl b2bl, then the sequence of initiations and terminations of b that loop from

SEQUENCE bbl,b2
CORRESPONDING TO 5
(See Fig. Z for example)

SEQUENCE FOR "2

SEQUENCE FOR "/’-n

FIG. 1. Sketch of 5(X) control
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0: (

FIG. 2. Example of x representation

q to qr are as shown in Fig. 2. For termination symbol transitions not shown in
Figs. 1 and 2, the 5(X) transitions are all assumed to go to the sink entry state of the
"sink" construction of states shown in Fig. 3. In Fig. 3 the termination symbol
transitions not shown are also assumed to enter the entry state of this sink
construction.

FIG. 3. "Sink" construction

From the construction of 5e(X) it is readily seen that for any pair
(X;il, i2,... ip) and interpretation , state qe is reached in &a(X) if and only if
o is consistent with (X i, i2, ip). Ifo is not consistent with (X il, i2, ip),
then each X-computation reaches the "sink" and is infinite in length.

Now consider schema J(XY) depicted in Fig. 4. In schema J(XY) we let
M {0, 1, 2}, D(r) O, R(r) {1, 2} and operations a and b be defined as before
for 5(X) and 5(Y). For convenience we denote state qe of (Y) in (XY) as qe*.
Note that the first performance of operation r, preceding 5e(X), initializes locations

and 2. The interpretation is consistent with (X;i,i2, ..., ip) for some
(i, i2,... ip) if and only if the computation reaches state qe in the (X) part of
(XY). In this event operation r is performed a second time, and state qo of 5(y)
is entered. The second performance of r resets locations 1 and 2 to the same values
that they had upon entering 5(X) (since Fr is single-valued, and location 0 is
never changed). Thus, the sequence of outcomes for a in (Y) must have the
same prefix as the sequence that occurred in J(X); in particular the outcomes
must have the prefix al1- Xazai2-la2 ai{ laza3 Now, the interpretation is also
consistent with Y if and only if state q* of (XY) is reached. Thus q* is reached in
some computation if and only if there is a solution to the Post correspondence
problem P(X, Y). From the 5(XY) construction we see that the accessibility of
states is undecidable for this kind of schemata. This is one of the main results of
Itkin and Zwinogrodski [5], and the (XY) construction is, in essence, the
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STATE q e
OF .d (X Y)

FIG. 4. Schema 5(X Y) with reset operation

construction they use. They call a schema one-valued if for each interpretation
the schema has only one -computation. They note that ,9(XY) is clearly one-
valued, so the state accessibility problem is undecidable for one-valued schemata.
They also show that since a finite computation results only when q* is reached,
the equivalence of one-valued schemata is undecidable 5]. This follows easily by
constructing a schema i(xy) which is identical to (XY) except it loops upon
entering state q* in 5i(x Y). Then (XY) and 5i(x Y) are equivalent only if this
state is not reached. To maintain the one-valued nature of the schemata a looping
construction as in Fig. 3 is required from state q* of 5i(X Y).

Before we prove some additional undecidable results in the next section,
we show that any schema of the (XY) variety also satisfies some of the other
simple properties of schemata.

Since (X) and 5(y) are formed from n-tuples of finite words over the
alphabet (b l, b2) as described in Figs. 1, 2 and 3, the number of,states in 5(X) and
5(Y) is finite. Thus, 5(XY) is a finite state schema. Also, 5(XY) is constructed
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in such a way that from any state q with z(q, a) defined, where a Zi, for all n Ei
and n 4: a, z(q, n) is undefined. Thus, at most one operation can be initiated at any
state. Also, if z(q, a) q’ for a Zi, then z(q’, n) is undefined for any n 6 Ei. Thus,
once an operation is initiated, it must be terminated before any other operation
can be initiated. This leads not only to the one-valued property of ,9(X Y) but also
to the fact that ,.(XY) is serial, determinate, permutable, persistent and compu-
tationally commutative. Moreover, 5(XY) is lossless since R(a), R(b) and R(r) are
not empty. Obviously ,9(XY) is not repetition-free since interpretations can be
devised to make ,9(X Y) enter qe in 5e(X) forcing operation r to be performed twice.
This gives a computation of the form vfw?x with R(c) D(r)= for each
operation c of ,9(X Y) since D(r) 0 and 0 is not an element of R(a), R(b) or R(r).
It can also be shown that ,9(XY), although computationally commutative, is not
commutative.

Finally, we wish to show that any 5(X Y) can also be represented by a counter
schema. A counter schema [1] is a schema whose control ’-- is specified by: a
nonnegative integer k (the number of counters); a finite set S with a distinguished
element So; an initial vector FI Nk, where N denotes the nonnegative integers;
a function v from the alphabet E into Nk such that a Zt implies that v(a) >= 0;
and a partial function O:S E --. S which is total on S Et. Now for the control-- (Q, q0, Z, r) of the counter schema, the set of states Q S N, qo (So, I-I),
and r((s, x), a) is defined if O(s, a) is defined and x + v(a) >__ 0; when defined,
r((s, x), a)= (O(s, a), x + v(a)). To show that ,(XY) can be represented in the
counter schema form we note the following:

(i) Since the constructions of Figs. 1, 2 and 3 give a finite state structure we
can let this finite state structure be S in a counter schema. The transitions
then become the partial function O:S Z S which is total on S Z.

(ii) We can let k 0, so there are no counters and the schema (XY) satisfies,
in a degenerate way, the requirements of a counter schema.

This demonstration that 9(XY) can be represented by a counter schema
is a simple result of the fact that any finite state schema can be represented by a
counter schema with k 0 counters. This is also used in the next section to obtain
counter schemata for variants of 5(X Y).

To summarize we note that (XY) is a finite state, one-valued, serial, deter-
minate, permutable, persistent, computationally commutative, lossless, counter
schema. In the proofs of the next section we are interested primarily in the fact
that 5(X Y) is a counter schema.

4. The undecidability theorems. We shall use 5(XY) and minor variations to
prove several new undecidability results. These theorems use the fact that it is
undecidable whether, under some interpretation, state q* of 5(XY) is reached
or not. Through this result other properties are shown to be undecidable by
adding suitable constructions onto (XY) at q*.

THEOREM 1. It is undecidable whether a given counter schema is computationally
commutative, one-valued or serial.4

4 Since 9U(xy) in the proof is determinate, permutable, persistent, lossless, and finite state,
Theorem also holds for schemata with these properties.
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Cl

FIG. 5. A simple structure which is not computationally commutative

Proof Construct for any 5(XY) a schema zii(xy) which is identical to
,ff(XY) except that a noncommutative behavior emanates from q*. A simple
structure of this type is shown in Fig. 5. Since this addition to ,(X Y) is finite state,
,9U(X Y) is also finite state and therefore a counter schema. If x is a prefix of an
o-computation for ,/gii(s Y) that reaches state q*, then both xa b and xbla
are o-computations, where r(qo,xb)= q’. Since z(q’,albl) and z(q’,blal) are
both defined in o-computations and unequal, ,9ii(xy) is not computationally
commutative if and only if q* is reached. Similarly ,9ii(xy) is not one-valued or
serial if and only if q* is reached. The theorem follows.

THEOREM 2. It is undecidable whether a given counter schema is bounded.
Proof. Construct for any 9(X Y) a new schema ,9iii(x Y) which upon entering

state q* has unbounded behavior. This can be done by adding an operation c
which loops on state q*. It suffices to let D(c) 1, R(c) 2, K(c) 1, where

and

r(q, ) { undefined,

for q q*,

otherwise,

r(q, c,)
(q*
sink entry state,

for q q*,

otherwise.

Now any schema of the form ffiii(xy) is unbounded if and only if q* of ,.:tgiii(xy)
is accessible. Also ,.9Ui(x Y) is finite state and thereby a counter schema.

Note that this construction also shows the undecidability of such schemata
for the serial and one-valued properties.

THEOREM 3. It is undecidable for a counter schema whether a given operation
a A is terminating.6

Proof. Consider another variation ,9gv(X Y) of ,_9(X Y). In ,_fv(X Y) let all but
the structure following q* and the sink structure be the same as 9(XY). But let
the sink structure be a single state qs, where r(qs, fi), r(qs, ?) and r(q, ) are undefined
but r(q, o) q for each termination symbol. For the structure following q* use
the sink construction of Fig. 3 with the sink entry state being q*. Then for ,i(X Y),

Since iU(x Y) in the proof is finite state, determinate, permutable, persistent, computationally
commutative and lossless, Theorem 2 also holds for schemata with these properties.

Since 5ei"(XY) is finite state, one-valued, serial, determinate, permutable, persistent, computa-
tionally commutative, and lossless, Theorem 3 also holds for schemata with these properties.
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operations a and b are terminating if and only if q* is not entered. Note that
,_iv(x Y) is clearly a counter schema.

It is interesting to note that one sees directly from (XY) that the question
of the existence of a finite computation is undecidable; this is similar to the
construction used in I5]. From ,.iv(XY), we obtain a different result, namely,
that the question of the existence of an infinite computation is undecidable.

THEOREM 4. It is undecidable whether a given finite state counter schema is
determinate.

Proof. Construct, for any ,(X Y), a new schema ,U(X Y) which upon entering
state q,,* has indeterminate behavior. A simple indeterminate attachment is shown
in Fig. 6, where m and n are two operations in 5e"(XY) that are not in ,(XY)
and R(m) f-] R(n) :/: . For example let D(m) D(n) 0 and R(m) R(n)

{1,2}. Then ,(XY) is indeterminate if and only if q* is reached in some
computation, and this is undecidable. Clearly ,(XY) is a finite state counter
schema.

ml

n

K(m) K (n):

FIG. 6. An indeterminate construction

By a simple addition of an operation which is performed exactly once only
when q,,* of J(X Y) is reached we can obtain the related result.

THEOREM 5. It is undecidable for a given counter schema whether, for a given
operation c, any computation exists containing ?;.8

5. Comparison of undecidability and decidability theorems. In 1] a number of
results were given showing the decidability of commutativity, boundedness,
termination, and determinacy for repetition-free counter schemata. The results

Since 5v(X Y) in the proof is permutable, persistent, computationally commutative and lossless,
Theorem 4 also holds for schemata with these properties. It is also readily seen that the properties
"persistent" and "permutable" can be removed and replaced by the term "serial." An appropriate
construction is formed by eliminating q’ and its incident edges from Fig. 6. Although this leads to a serial
schema, it is not necessarily one-valued.

As should be clear, Theorem 5 also holds for schemata that are finite state, one-valued, serial,
determinate, permutable, persistent, computationally commutative and lossless.
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of the previous section yield undecidability results for these properties. By compar-
ing these results we show that deletion of repetition-freeness from the hypothesis
of the decidability theorems changes each problem to an undecidable one. In
particular it is decidable for any given repetition-free counter schema whether the
schema is computationally commutative,9 bounded, or a given operation a A is
terminating [1, Theorems 4.5-4.7]. Also, Theorem 4.9 of 1] states that it is
decidable whether a repetition-free, lossless, persistent, commutative, counter
schema is determinate. Theorems through 4 show that without repetition-
freeness these properties are undecidable. Thus, in a sense, we are "close" to the
borderline between decidability and undecidability. Also, these results are as
tight as can be expected since only the one hypothesis is removed.

It is interesting to note that the schema 5(XY), which is the basis for the
undecidability results, is itself very reliant on the repetitive character of the "reset"
operation. In particular, operation r is the only repetitive operation of 5(XY)
and is performed at most twice in any computation. Thus (XY) is in some sense
minimally repetitive since only one operation can be repetitive and this operation
can be repeated only once.

The properties noted in the footnotes of the previous section, or any combina-
tion of them, could be added back as hypotheses in the respective undecidability
results. Of course, the properties could also be added into the hypotheses of the
decidability theorems since adding further constraints to the hypotheses of the
decidability theorems could only tend to simplify the problem further. This
thereby gives a family of comparable pairs of theorems with whatever combination
of constraining hypotheses, consistent with those noted, are desired.

Since it is decidable whether a given counter schema is repetition-free [1,
Theorem 4.4], we can now see rather clearly the importance of repetition-freeness
in schemata. A natural question for further study arises from these results as to
whether similar results can be obtained by deletion of one or more of the other
constraining hypotheses in the decidable theorems. For example, does undecid-
ability result if either persistence or computational commutativity are deleted
from the determinacy theorem? Since 5(X Y) is repetitive it is clear that a different
basic construction would be required to answer these questions.

Acknowledgment. The author is grateful to Dr. Arnold L. Rosenberg for his
careful reading and detailed comments on an earlier version of this paper.
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THE TRANSITIVE REDUCTION OF A DIRECTED GRAPH*

A. V. AHO,’ M. R. GAREY" AND J. D. ULLMAN
Abstract. We consider economical representations for the path information in a directed graph.

A directed graph G is said to be a transitive reduction of the directed graph G provided that (i) G has
a directed path from vertex u to vertex v if and only if G has a directed path from vertex u to vertex v,
and (ii) there is no graph with fewer arcs than G satisfying condition (i). Though directed graphs with
cycles may have more than one such representation, we select a natural canonical representative as
the transitive reduction for such graphs. It is shown that the time complexity of the best algorithm
for finding the transitive reduction of a graph is the same as the time to compute the transitive closure
of a graph or to perform Boolean matrix multiplication.

Key words and phrases. Directed graph, binary relation, minimal representation, transitive
reduction, algorithm, transitive closure, matrix multiplication, computational complexity.

1. Introduction. Given a directed graph G, one is often interested in knowing
whether there is a path from one vertex to another in that graph. In many cases
it is possible to represent this information by another directed graph that has
fewer arcs than the given graph. Informally, we say that a graph G is a transitive
reduction of the directed graph G whenever the following two conditions are
satisfied:

(i) there is a directed path from vertex u to vertex v in G if and only if there
is a directed path from u to v in G, and

(ii) there is no graph with fewer arcs than G satisfying condition (i).
Such minimal representations for graphs are of particular interest for efficiently
executing certain computer algorithms, such as the precedence constrained
sequencing algorithms of [1] and [2], whose operation is partially determined by
an input-specified transitive relation. In particular, these minimal representations
may require less computer memory for storage and, depending upon the precise
nature of the algorithm, may also lead to a reduced execution time.

In this paper, we mathematically characterize the transitive reduction and
provide an efficient algorithm for computing the transitive reduction of any
given directed graph. Furthermore, we show that the computational complexity
of computing a transitive reduction is equivalent to the computational complexity
of computing a transitive closure or performing a Boolean matrix multiplication.

In [3], the minimum equivalent of a directed graph G is defined as a smallest
subgraph G’ of G such that there is a path from vertex u to vertex v in G’ whenever
there is a path from u to v in G. Our notion of transitive reduction is similar,
but with the important exception that we do not require a transitive reduction
to be a subgraph of the original graph. The two notions give rise to the same
reduced representation when the original graph is acyclic. However, the transitive
reduction of a graph G with cycles can be smaller and much easier to find than a
minimal equivalent graph for G.
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2. Definitions and basic results. A directed graph G on the set of vertices
V {vl, Va,’", Vn} is a subset of V x V, the members of G being called arcs.
A directed path in G from vertex u to vertex v is a sequence of distinct arcs 1,
a,’", ,,P >= 1, such that there exists a corresponding sequence of vertices
u=vo,v1,va,...,vp=v satisfying k=(Vk, Vk+I) sG, for 0=<k<__p- 1. A
cycle is a directed path beginning and ending at the same vertex which passes
through at least one other vertex. A simple cycle is a cycle which passes through
no vertex more than once. A loop is an arc of the form (v, v). A graph will be called
acyclic if and only if it contains no cycles. Notice that this differs slightly from
conventional usage, since we do allow an acyclic graph to contain loops.

A graph G is said to be transitive if, for every pair of vertices u and v, not
necessarily distinct, (u, v)s G whenever there is a directed path in G from u to v.
The transitive closure Gr of G is the least subset of V V which contains G and is
transitive.

THEOREM 1. For any finite acyclic directed graph G, there is a unique graph G
with the property that (Gt)r Gr and every proper subset H of G satisfies Hr =/= Gr.
The graph G is given by

G [-’1 G
GieS(G)

where S(G) {GIlG G}.
Proof. The proof of Theorem 1 follows from the following two lemmas. (Note

that Lemma 1 is actually a straightforword consequence of Theorem 1 in [3] .)
LEMMA 1. Let G1 and Ga be any two finite acyclic directed graphs (on the same

vertex set) satisfying G G. If there exists an arc G such that q G2,

then (a {(})T G1T G.
Proof. Let e (u, v) be as described in the hypothesis of the lemma. Since

G] G2r and e G2, Ga must contain a path from u to v passing through some
other vertex, say w. Then G1 must contain a directed path from u to w and a
directed path from w to v. If the path from u to w in G1 includes arc , then G1
contains a path from v to w. But, since G1 also contains a path from w to v, this
contradicts G being acyclic. If the path from w to v in G1 includes arc , then G1
contains a path from w to u. But, since G1 contains a path from u to w, this also
contradicts G1 being acyclic. Thus, G1 contains a directed path from u to w and
from w to v, which does not include arc e. Therefore, G1 {e} contains a path
from u to v, so (G {(z})T G G.

LEMMA 2. Let G be any finite acyclic directed graph. Then the set S(G)
{GI[G Gr} is closed under union and intersection.

Proof. Let G1 and G2 be any two members of S(G). Since G1r G2r Gr,
G1 U G2 --- Gr. Because Gr is transitive, we then have (G1 U G2)r

_
Gr. Further-

more, G1 is contained in G1 U G2, so Gr Gr
_

(G1 U G2)r. Therefore,
(G1 U 62)r= Gr and (G U G2)e S(6).

.., e,} G1- (G1 G2). By repeated application ofNow let {1, 2,
Lemma 1, we have

(a {Z1})T alT,

(a {z1} {z2})T= a]’,

{1} {(X2} {Or})T--- G’.
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But the last equation merely says that (G1 f) G2)r= Gr Gr, so(G1 G2)S(G).
Since S(G) is a finite set, Theorem 1 is obtained as a straightforward applica-

tion of Lemma 2.
Theorem 1 shows that the intuitive definition of transitive reduction actually

yields a unique graph for any finite acyclic directed graph. Furthermore, the transi-
tive reduction of any such graph G can be obtained by successively examining the
arcs of G, in any order, and deleting those arcs which are "redundant," where an
arc e (u, v) is redundant if the graph contains a directed path from u to v which
does not include e.

We now extend this analysis to graphs which contain cycles. Consider
the graph G {vl, V2), (/’)2’ U3), (/)3’ U2), (/)2, /)1)} of Fig. l(a). If H is any proper
subset of G, then Hr - Gr. Thus, G is its own minimum equivalent graph. How-
ever, the graph G {(v, v2), (v2, v3), (v3, v)} of Fig. l(b) contains only three
arcs and has the same transitive closure as G, as does the graph G2 {(v, v3),

V V V

(a)
v v2 v3 v v2 v3
e.<., , e.."

(b) (c)

FIG. 1. Graphs with cycles

(/)3, /)2),(/)2, Vl)} of Fig. l(c). No other graph with three or fewer arcs has the
same transitive closure as G. Since G -: G2 we see that for graphs with cycles there
may not be a unique graph, with fewest arcs, having the same transitive closure as a
given graph. Thus, Theorem 1 cannot be simply extended to encompass all finite
directed graphs. This example also shows that the lemmas cannot be similarly
extended. Furthermore, since neither G nor G2 is a subset of G, it may also be
possible that no such minimal graph can be constructed by removing certain arcs
from the given graph, as was the case for acyclic graphs. However, we shall show
that all such minimal graphs, for any specific given graph, must have similar
structure, and based on this result we choose a unique representative to be the
unique transitive reduction.

Two vertices u and v of a directed graph G will be called equivalent if either
u v or G contains a cycle which is incident with both u and v. Given any finite
directed graph G, we say that G is the equivalent acyclic graph for G when the
vertices of G are the vertex equivalence classes of G, denoted by Ek, and the arcs of
G satisfy (Ei, Ej) G if and only if there exists an arc (u, v) G such that u E
and v Ej. If G is the equivalent acyclic graph for G, and G2 is a subset of G1,
then the graph G3 is a cyclic expansion of G2 if and only if:

(i) G3 has the same vertices as G;
(ii) G2 is the equivalent acyclic graph for G3;
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(iii) for each multimember vertex equivalence class E of G, G3 contains a
simple cycle incident with all vertices in Ei and G3 contains no other arcs
between members of Ei; and

(iv) for each arc (E, Ej)e G2, E- Ej, there is exactly one arc (u, v)e G3

satisfying u e E and v e Ej.
A cyclic expansion simply replaces the loop and vertex corresponding to a multi-
member equivalence class by a simple cycle through the members of that equiva-
lence class, with each arc between different equivalence classes transformed into a
similarly directed single arc between some pair of vertices, one from each of the
two equivalence classes.

THEOREM 2. Given any finite directed graph G, let G1 be its equivalent acyclic
graph and G] be the unique "transitive reduction" of G given by Theorem 1. Then
the directed graph H satisfies Hr Gr and has the fewest arcs of any such graph
if and only if H is a cyclic expansion of G].

Proof. The proof follows directly from the following lemmas, where G, G,
and G are defined as above.

LEMMA 3. If H is the equivalent acyclic graph for a directed graph H satisfying
Hr= Gr, then H G.

Proof. Since Hr Gr, H contains a path from u to v if and only if G contains
a path from u to v. Then H and G must have the same vertex equivalence classes, so
H and G are on identical vertex sets. If HI contains an arc (E, Ej) not contained
in Gr, then H contains a path from E to Ej and G contains no such path. But
then H contains a path from some u Ei to some v e Ej and G contains no such
path, a contradiction. Similarly, every arc of G] is an arc of H, so G" H].

LEMMA 4. If H has equivalent acyclic graph H satisfying Hr G, then H
is either a cyclic expansion ofG or H contains more arcs than any cyclic expansion
of

Proof. If Har Gr, we know from Theorem 1 that H must contain G].
Then H must contain at least one arc for each arc of H, i.e., if (Ei, E) e H, there
exist u e E and v e Ej such that (u, v) e H. Furthermore, H must also contain enough
arcs to ensure that every pair of vertices belonging to the same equivalence class lie
on a cycle in H. But this requires at least as many arcs as there are members in the
equivalence class, except for single member classes, and such a minimal number of
arcs is used if and only if the only arcs between members of the equivalence class
form a single cycle including exactly all members of the class. The definition of a
cyclic expansion was chosen precisely to include all and only those graphs which
use such a minimal number of arcs. Thus, H must either be a cyclic expansion of G]
or must have more arcs than any cyclic expansion of G].

LEMMA 5. Every cyclic expansion of G] has the same number of arcs.

Proof. The number of arcs in any cyclic expansion of G] is exactly equal to the
number ofarcs in GI plus the number ofvertices ofG which belong to multimember
vertex equivalence classes, minus the number of multimember vertex equivalence
classes in G.

LEMMA 6. If H is a cyclic expansion of G], then Hr Gr.
Proof. If (u, v)e Gr, G contains a path from u to v. If u and v belong to the

same vertex equivalence class, H must contain a path from u to v so (u, v)e Hr.
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If u and v belong to different equivalence classes, u E, v e Ej, G contains a path
from E to Ej. But then G] contains a path from E to Ej, so H contains a path from
u to v and (u, v) e Hr. Similarly, if (u, v) Gr, G contains no path from u to v. Also,
u and v belong to different vertex equivalence classes, u e E, v e Ej, and G con-
tains no path from E to Ej. But then G] contains no path from E to Ej, and H
cannot contain a path from u to v, so (u, v) Hr.

This completes the proof of Theorem 2.
Theorem 2 tells us that if G is the equivalent acyclic graph for G, then every

cyclic expansion of the graph G] given by Theorem 1 will satisfy our original
intuitive definition for a transitive reduction of (3. In fact, for most algorithms
requiring such a transitively reduced graph, the most useful representation will
simply be G] along with the corresponding vertex equivalence classes of G.
However, we also choose to select a unique representative from the various cyclic
expansions of G] to be defined as the transitive reduction of G.

Let the vertices of G be arbitrarily ordered by assigning them indices as
V l, 192, V If G is the equivalent acyclic graph for G and G] is the "transitive
reduction" of Ga given by Theorem 1, then the canonical cyclic expansion of G] is
the unique cyclic expansion G2 of G] satisfying"

(i) If (vi, vj) G2, v Ek, vj Ek, and vi =/= vj, then either j > and none of
v+a,..., vj_ is in E or v has the largest index in E and vj has the
smallest index in E; and

(ii) For each arc (E, Ej)e G], E 4= Ej, there is an arc in G2 from the least
index member of E to the least index member of Ej.

The canonical cyclic expansion merely expands each loop and vertex corresponding
to a multimember equivalence class into an ordered simple cycle, with all arcs
between equivalence classes transformed into arcs between the least members of
the equivalence classes.

We then define the transitive reduction of a finite directed graph G to be the
unique graph G which satisfies:

(i) (G’)r Gr;
(ii) If Hr Gr, then H contains at least as many arcs as G; and

(iii) If G is not acyclic, then G is the canonical cyclic expansion ofthe transitive
reduction of the equivalent acyclic graph for G.

Existence and uniqueness of G follow from the previous results.
We do not attempt a definition of transitive reduction for graphs having

infinite vertex sets. However, we point out that additional complications do arise
for infinite graphs. Some of these difficulties are illustrated by attempting a
reasonable definition of transitive reduction for (i) the countably infinite graph
with arcs in both directions between every pair of vertices, and (ii) the infinite
graph having a vertex for each real number with an arc from to j if and only if
< j. In neither case does there exist a graph, having the same transitive closure

as the given graph, such that no proper subset of that graph also has this property.

3. Computational complexity of the transitive reduction operation. We now
turn to the question of how quickly the transitive reduction of a graph can be
computed. In what follows, we assume that a graph G is represented by its adjacency
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matrix, the matrix with a 1 in row and column j if there is an arc from the ith
vertex to the jth vertex and a 0 there otherwise. Our results clearly apply to any
other graph representation that can be converted to an adjacency matrix and back
in time O(rt2), and in which transitive reduction takes O(rt2) time.

We proceed to demonstrate that under the above assumption, the number of
steps of a random access computer (e.g., see [4]) needed to compute the transitive
reduction of a graph with n vertices differs by at most a constant factor from the
time needed to perform Boolean matrix multiplication or to compute the transitive
closure of a graph. It should be noted that it was shown in [5] that multiplication of
n x n Boolean matrices requires time which is at most a constant factor more than
the time to compute the transitive closure of an n vertex graph, and the converse
was shown in [6], 7].

THEOREM 3. If there is an algorithm to compute the transitive closure of an n
vertex graph in time O(n), then there is an algorithm to compute transitive reduction
in time O(n).

Proof. We can compute the transitive reduction of a graph G with n vertices as
follows.

1. Find G1, the equivalent acyclic graph of G.
2. Let G2 be formed from G1 by deleting loops.
3. Let M be the incidence matrix of G2, and let M2 be the incidence matrix

ofa .
4. ComputeM M1M, and let G be the graph whose incidence matrix is

M.
5. Then G is G1 G.
6. Let G be the canonical cyclic expansion of G.
It should be evident that steps 1, 2, 5 and 6 require O() time. (See [8], e.g.,

for step 1.) Step 3 requires O() time to compute G. Step requires O() time by
[4]. Thus, the entire algorithm requires O() time, since 2 (see [4]).

It remains to show that G G1 G. By Theorem 1, arc (u, ) is in G if
and only if (u, ) G1, and there is no path from u to which does not include arc

(u, ). Such a path exists if and only if there is some w not equal to u or such that
there is an arc (u, w) and a path from w to in G1. These are exactly the conditions
under which there will be an arc (u, ) in G.

THEOREM 4. If transitive reduction requires O(n) steps, 2, on a graph of n
nodes, then transitive closure requires O(n) steps.

Proof. Let G be a graph of n vertices. Construct a graph G’ with nodes u, u’
and u" for each vertex u of G. The arcs of G’ are the following.

1. If (u, v) is in G, it is in G’.
2. (u’, u) and (u, u") are in G’ for each vertex u of G.
3. (u’, v")e G’ for all vertices u and v of G. G’ is shown in Fig. 2.
We observe that (u’, v") is in (G’) if and only if (u, v) is not in Gr. That is, since

no arc enters u’ or leaves v", both u’ and v" are in vertex equivalence classes of their
own. By Theorems 1 and 2, (u’, v") is in any transitive reduction of G’ if and only if

It may appear that we have defined away the problem. However, a little thought will suffice
to conclude that in any reasonable representation, a transitive reduction algorithm will have to "look
at" all the arcs and thus take at least time O(n2).
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000

FIG. 2. Construction of G’

there is no path of length greater than one from u’ to v". But such a path is seen to
exist if and only if there is a path from u to v in G.

Thus, we may compute GT by the following algorithm.
1. Construct G’.
2. Compute (G’)’.
3. Say (u, v) is in GT if and only if (u’, v") is not in (G’)’.
Steps 1 and 3 clearly take time O(n2) and step 2 requires time O(n). Thus, the

entire algorithm requires O(n) steps.
Theorems 3 and 4 reduce the problem of finding a good algorithm for transi-

tive reduction to that offinding a good algorithm for transitive closure. The method
of [6], 7] is based on Strassen’s matrix multiplication algorithm [9], and thus
takes O(ng2v) steps. This method is the best known for large n. Under some
conditions, transitive closure algorithms found in [10]-[12] may be preferred.
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ASYMPTOTIC SERVICE SYSTEM OUTPUT, WITH APPLICATION
TO MULTIPROGRAMMING*

DONALD P. GAVER?

Abstract. In a multiprogramming computer system modeled as a cyclic queue the number of
program segments completed at the CPU in a period of time is discussed. It is shown that this number
is approximately normally distributed as the time period becomes long. Parameters of the normal
distribution are determined. Numerical examples illustrate the results.

1. Introduction. It is often mathematically convenient and useful to represent
the behavior of a computer system, or part thereof, as a single server queueing
process. This is appropriate even when several servers are present, as in multi-
programming situations involving cyclic queues; see Gaver [2], and Lewis and
Shedler [3]. Then the server singled out for particular attention usually possesses
"general" (nonexponential) service times, while the others enjoy simple Markov-
convenient properties. By assuming this structure, it is often possible to compute
such system characteristics as waiting time properties and server idleness proba-
bility, where the latter depend upon server processing rates and the number of
programs (customers) allowed to be present in the system simultaneously.

This paper is devoted to studying the distribution of the output of the server in
such a process. By this we mean the following. Beginning at some moment t’,
the total number of service completions during (t’, t’ / t) is observed. Denote this
number by Z(t’, t’ + t), or by Z(t) if the process has stationary increments. We
term Z the output of our server, and seek to characterize its behavior. It will be
shown in the sequel that in interesting cases Z is approximately normally distri-
buted as becomes large. Furthermore, in cyclic models, e.g., for multiprogram-
ming, a simple continuity argument shows that the outputs of both servers enjoy
the same limiting normal distribution. The methods employed make possible a
comparison of various multiprogramming situations. Some limited numerical
illustrations are presented.

2. Inputs and outputs. In this section we record a simple observation upon
which much of the later development rests.

(a) The M/G/1 service system. Here 2 denotes the Poisson arrival rate, and S
is a generic service time. Assume E[S2] < . Let N(t) denote the number of custo-
mers in the system at time t, and let the input, A(t), be the total number of arrivals
to have occurred in (0, t). Then Z(t), the total output in (0, t), is defined by the
continuity relation

(2.1) N(O) + A(t)= Z(t) + N(t).

Now suppose p 2E[S] < 1. Then, for large t, N(t) is finite while A(t) becomes
large, and hence Z is asymptotically similar to A(t). Putting this formally, write
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(2.1) as

Now when p < 1 and E[S2] < , it is well known that

(2.3) lim E[N(t)[N(O)] E[N()] < ,
and by Chebyshev’s inequality,

(2.4) P{ N(t)- N(O)
> } <

E[N(t)] + N(O)

for any e > 0 as --, . Thus it follows that the left-hand side of (2.2) approaches
zero in probability, and hence the distribution of (A(t)- 2t)/ converges
to the N(0, 1) law, and so does that of (Z(t) 2t)/2w/. This result will hold true
for many types of queueing systems, e.g., for the GI/G/1 as well as for various
multiple server configurations.

(b) The cyclic system. Of particular interest in the multiprogramming com-
puter system studies context is the cyclic arrangement depicted in Fig. 1. In the

ooo cpgI, ,oooooo[ DTuI,

FIG.

most rudimentary model a fixed finite number, J, of tasks or programs is present
in the system at any time. A program is processed at the central processing unit

(CPU) until an interruption occurs ("page interrupt" in certain types of machines)
for lack of information. At this moment the program enters the data transfer unit

(DTU) stage, where it awaits and eventually receives the required information and
is then returned to the CPU stage. In the mean time, the CPU may be busy pro-
cessing another program, and is therefore kept busy. Programs that are completed
at the CPU stage are assumed to leave the system and be instantaneously replaced.
Models of this type have been considered by various authors (cf. Gaver [2],
Lewis and Shedler 3], and Shedler [4]).

Although only a limited amount of actual data analysis has been carried out,
it may be somewhat appropriate to assume that the service times of programs at
the CPU are independently and exponentially distributed; see Smith [5]. Actually,
recent data analysis has indicated that distributions of greater than exponential
skewness (hyperexponentials) are more appropriate; our analysis can be extended,
with some effort, to deal with such models. Service times at the DTU are apparently
of nonexponential (more nearly constant) character. We shall, as a consequence,
make such assumptions it is noted that this represents a reversal ofthe assumptions
made in Gaver [2].

In order to discuss the outputs of the servers, denote by C(t) the number of
programs that complete the CPU stage (number of CPU service completions) in
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(0, t), while D(t) refers to the corresponding quantity for the DTU. Furthermore,
Nc(t) and No(t represent the number of programs at the CPU and DTU stages
respectively. Then again the continuity relation (where C takes the place of Z)
states that

(2.5) Uc(O) + D(t)= C(t) + Uc(t).

Hence, if there exist norming constants/z and a such that [D(t) -/t](ax/)-
has a limiting normal distribution, then, by the same argument as that outlined
in connection with the M/G/l-system, [C(t) pt](ax/)- approaches the same
normal distribution. That is, the output distributions ofCPU and DTU are asymp-
totically identical. But for the present model it may be seen that D(t) is actually a
cumulative process in the sense of Smith (cf. Cox [1, Chap. 8, particularly 8.5],
or Smith [5]). Hence, asymptotic normality follows, e.g., from Smith’s develop-
ment [5, pp. 262-263].

3. The cyclic system, its busy periods, and a cumulative process. The process
associated with the cyclic system of Fig. 1 may conveniently be viewed as a suc-
cession of busy and idle periods for the DTU. Let there be J programs circulating,
and consider a moment t’ such that ND(t’ O) 0 but ND(t’ 1. That is, the
system is idle prior to t’, becoming busy with the service of one customer at t’.
A busy period, or first passage time, for the DTU is defined by

(3.1) vl(J) inf {tlNo(t + t’)--0}.

Following each busy period is an idle period, during which all J programs are
queued behind the CPU. By the Markov property of the CPU service times, a
generic idle period of duration 1 is exponentially distributed with mean 2-1.
Successive idle periods and subsequent busy periods are independently and
identically distributed random variables, since CPU and DTU service times are
mutually independent. Put

(3.2) X(")= I") + z]")(d) for n 1,2,...

{X(")} represents the times between the successive regeneration points at which the
DTU becomes idle. In terms of the {X("), n 1, 2,... } sequence, which is one of
independently and identically distributed random variables, one can speak of a
renewal counting process, R(t), where

(3.3)
R(t)--O iff X(1)> t,

j+l

R(t) j iff Xtn) <= and x(n) >
n=l n=l

for j 2,3,.-"
Let the output, or number of service completions, during a (the nth) busy

period be

(3.4) fl]")(J) D(z]")(J)) for n 1,2, 3,-...
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Then the output process D(t) is cumulative in the sense of Smith [5], with

R(t)

(3.5) D(t) (")(J) as --, oo
n=l

(the approximation consists in neglecting outputs during part of an X-cycle;
these are negligible for large t). A central limit theorem for such processes (cf.
Cox [1]) enables one to show that D(t), appropriately normalized, is approximately
normally distributed for large t, and to find the parameters of the limiting distribu-
tion (asymptotic mean and variance) explicitly in terms of the CPU service rate, 2,
and the distribution of service times at the DTU. To be specific, it may be shown
that as

E[fl (J)]
(3.6) e[D(t)] t=tttE[X]

and

(3.7) [D(t)] tvar-[fla-!J)](E[X]
+

var [X](E[fl,(J)])2(E[X])3 2cv [fl,(J),_[_X]E[fll(J)]_tvar

=_ a2t

and that (D(t)- tla)/ax/- tends to the N(0, 1) law as becomes large. Explicit
evaluation of the parameters # and a2 is discussed in the next section. Finally the
development of 2 then implies that (C(t) t#)/ax/ also has the limiting N(0, 1)
distribution.

4. Cumulative process parameters. Recursive evaluation of busy period
properties as J increases was discussed in Gaver [2]. Let S be the DTU service
time, with distribution U(x) and Laplace-Stieltjes transform

(4.1) u(s) e-sxU{dx}.

Then consider the following cases.
Representation.
(A) J 1. Here clearly

(4.2) z,(1) S, fl,(1)= 1.

Probability

e-ks 1 e- kS

S(=z,(1)) S + z’(2)

1 1 + fl’(2)

FIG. 2



142 DONALD P. GAVER

(B) J 2. Condition on S to find the results in Fig. 2. Use of the symbol
means that, for example, z’x(2 has the z x(2 distribution but is independent of
events leading up to the initial service completion. To explain further, consider
the situation just following the initial service completion of the busy period.
Either (i) no CPU output occurred during S, an event of probability e- ks, in which
case the busy period is of duration S with one output, or (ii) exactly one CPU
output occurred, an event of probability 1 e-ks, in which case the initial situa-
tion was reproduced, with one program at the CPU and one at the DTU, but with
an initial component of busy period duration, S, and one initial output.

(C) Arbitrary J. Again condition on S. Define zi(J) and fli(J), i= 1,2,..., J,
to be respectively the first passage time from to i- 1 and the output therein,
given that a service is just commencing at the moment No i.

For the present setup, see Fig. 3. Now a little reflection shows that zi(J) has
the same distribution as x(J + 1), and similarly that fli(J) has the same dis-
tribution as flx(J + 1). This fact enables us to compute successively the various
expectations required to evaluate (3.6) and (3.7). We now illustrate.

Probability

e ks 2Se ks (2S)e-s
j

s Jv-2 (s)

J-1

s s + ;(J) s + Y ’(J) s + ’,(s)
i=1 i=1

J-1

1 1 + fl’(d) 1 + fl’(d) 1 nt- 2 fl’i(J)
i=1 i=1

FIG. 3

(A’) J 1. Directly,

E[z (1)] E[S], var Ivy(l)] var IS].

(4.3) E[fl(1)] 1, var [fl(1)] 0,

cov [zx(1), fix(l)] 0.

(B’) J 2. The condition on S is

(4.4) E[z,(2)[S] S + (1 e- xs)E[Zl(2)].

Consequently after removal of the condition on S and use of (4.1),

E[S] E[S]
(4.5) E[rx(2)]

E[e s] u[2]"
Likewise,

1 1
(4.6) E[fl,(2)]

E[e -zs] u[2]"
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Squaring column by column in Fig. 2 delivers second moments. For example,

E[,(2)IS] S e -xs + E[(S + i(2))2](1 -e-s)
(4.7)

S2 + {2SE[(2)] + E[,(2)]}(1 e-XS).

So, upon removal of the condition on S,

E[S] + 2E[S(1 -e-XS)]E[r,(2)]
(4.8) E[1(2)]

E[e- xs]
the value of (4.5) is introduced to evaluate the latter expression. Next the variance
is computed by subtracting off the square of (4.5). In analogous fashion,

1 + 2El(1 e-S)]E[(2)]
(4.9) E[flz(2)]

E[e- s]
insertion of (4.6) and subtraction of its square yields the variance. The covariance is
obtained from the expectation

(4.10) EEfl(2)r(2)]
E[S] + E[S(1 e- zS)]E[fl (2)] + El1 e- ZS]E[ (2)]

E[e-s]

by subtraction of the product of (4.5) and (4.6). These expressions can be evaluated
in terms of the transform (4.1) and its derivatives, and thus there is natural impetus
to employ some explicitly transformable density, e.g., the gamma or hyperex-
ponential, to represent DTU service times.

Examination of Fig. 3 makes it clear that the busy period moments for any
J can be expressed in terms of the corresponding moments for smaller J-values.
This step can perhaps be best carried out numerically, for neat closed-form exact
expressions will not occur.

The busy period moments obtained by the procedure described may be
employed to evaluate the output parameters (3.6) and (3.7). Some numerical
illustrations are given in the following section.

5. Numerical examples. The effect of assuming various parameter values in
our multi-programming model can be investigated numerically by putting the
results of the previous section to work. Some rather limited examples appear in
Table 1.

Notice that when 2 > (E[S])- 1, in which case the DTU stage acts as
bottleneck, the move from J 1 to J 2 has dramatic effects. Although the
output rate can never exceed unity, improvements of at least ten percent occur.
The addition of further programs (J > 2) is justified if considerable overhead
activity is present;this feature is not included in the present model. It is of interest
to compare the numerical values of Table 1 to those obtained by Shedler [4].
Clearly 2[CPU utilization]--/, and a reference to the appropriate entries in
Table 1 of [4] provides numerical confirmation.

Examination of the variance of output is of some interest. If 2 is relatively
small (CPU the bottleneck), it appears that

(a) for J 1, var [C(t)IS exponential] > var [C(t)IS constant]
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TABLE

DTU
Constant, E[S]

Exponential, E[S]

J=l

J=2

J=l

J=2

cPu

2" 0.20 0.5 1.0 1.5 2.0 5.0

# 0.17 0.33 0.50 0.60 0.67 0.83
0
-2 0.12 0.15 0.13 0.10 0.07 0.02

# 0.20 0.45 0.73 0.87 0.94 0.98
0-2 0.18 0.31 0.23 0.12 0.05 0.01

# 0.17 0.33 0.50 0.60 0.67 0.83
0
-2 0.17 0.19 0.26 0.33 0.35 0.52
/ 0.19 0.43 0.67 0.79 0.86 0.92
0-2 0.17 0.29 0.37 0.47 0.56 0.81

but

(b) for J 2, var [C(t)IS exponential] < var [C(t)IS constant].

By way of explanation, one sees that when J 2 busy periods are more likely to
involve more than one DTU service when S is constant than when S is exponential.
Of course, if 2 > (E[S])-1, the DTU becomes the bottleneck. As anticipated in
this situation the output behaves like a renewal process with inter-event times
distributed according to S. Consequently when S is constant, o.2 t-1 var [C(t)]
dwindles to zero as 2 increases, reflecting the fact that outputs through the DTU
bottleneck are regular. Of course, the regularity is even greater when J 2
than when J 1. If, on the other hand, S is exponential, the variance gradually
approaches that of the DTU bottleneck, namely, unity.

It may be guessed from the numbers of Table 1 that when 2 > 1 the assump-
tion of exponential S provides an underestimate of output rate/, and an over-
estimate of 0"2, provided S is more regular--of smaller variance--than the ex-
ponential. Another estimate of o.2, useful when the DTU rate is smaller than that
of the CPU, is obtained by simply assuming that the DTU is never idle, and thus

var IS]
(E[S])3’

a familiar renewal theory result that will become increasingly accurate for larger
and larger J. Although we do not explore such approximations further at this point,
it seems evident that for increasingly complex systems--those in which there are
considerations of overhead, nonexponential distributions, and in which J > 2rathe
only practical route to understanding is through approximations and bounds.
If simulations are undertaken, it is useful to have some idea of the variance of C(t)
so that run lengths may be established. Approximate variances are often adequate
for such purposes.

6. Program termination and output. The previous development takes no
account of the fact that individual programs actually terminate. In order to intro-
duce this effect into the model, we can assume that each time a program leaves
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the CPU stage one of two events occurs: (i) the program terminates or is com-
pleted, or (ii) the program experiences an honest page fault and must go to the
DTU stage. Suppose that the choice of event (i) or (ii) is governed by a Bernoulli
trials process so that with probability p the program terminates, and with proba-
bility q 1 p the program continues to the DTU stage. In order to allow use of
the previous analysis, we shall assume that in case event (i) occurs a new program
is immediately introduced into the system at the DTU stage; the first pass through
this stage may well represent I/0 activity on behalf of this newest program.

Let M(t) represent individual program output over time t. Now given C(t),
M(t) is conditionally binomial, with

(6.1) E[M(t)[C(t)] pC(t)

so

(6.2) ElM(t)] pE[C(t)] plt =- Mt
as - v. Furthermore,

vat [M(t)] pqE[C(t)] + p2 var [C(t)]
(6.3)

pq#t + p2a2t att,
and since M(t) is easily seen to be a cumulative process, the previously quoted
theorem shows that the actual output of completed programs is approximately
normal as - .
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DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*

ROBERT TARJAN"

Abstract. The value of depth-first search or "bacltracking" as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and ar algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
k1V + k2E d- k for some constants kl, k2, and ka, where Vis the number of vertices and E is the number
of edges of the graph being examined.

Key words. Algorithm, backtracking, biconnectivity, connectivity, depth-first, graph, search,
spanning tree, strong-connectivity.

1. Introduction. Consider a graph G, consisting of a set of vertices U and a
set of edges g. The graph may either be directed (the edges are ordered pairs (v, w)
of vertices; v is the tail and w is the head of the edge) or undirected (the edges are
unordered pairs of vertices, also represented as (v, w)). Graphs form a suitable
abstraction for problems in many areas; chemistry, electrical engineering, and
sociology, for example. Thus it is important to have the most economical algo-
rithms for answering graph-theoretical questions.

In studying graph algorithms we cannot avoid at least a few definitions.
These definitions are more-or-less standard in the literature. (See Harary [3],
for instance.) If G (, g) is a graph, a path p’v w in G is a sequence of vertices
and edges leading from v to w. A path is simple if all its vertices are distinct. A path
p’v v is called a closed path. A closed path p’v v is a cycle if all its edges are
distinct and the only vertex to occur twice in p is v, which occurs exactly twice.
Two cycles which are cyclic permutations of each other are considered to be the
same cycle. The undirected version of a directed graph is the graph formed by
converting each edge of the directed graph into an undirected edge and removing
duplicate edges. An undirected graph is connected if there is a path between every
pair of vertices.

A (directed rooted) tree T is a directed graph whose undirected version is
connected, having one vertex which is the head of no edges (called the root),
and such that all vertices except the root are the head of exactly one edge. The
relation "(v, w) is an edge of T" is denoted by v- w. The relation "There is a
path from v to w in T" is denoted by v w. If v - w, v is the father ofw and w is a
son of v. If v w, v is an ancestor ofw and w is a descendant of v. Every vertex is an
ancestor and a descendant of itself. If v is a vertex in a tree T, T is the subtree of T
having as vertices all the descendants of v in T. If G is a directed graph, a tree T
is a spanning tree of G if T is a subgraph of G and T contains all the vertices of G.

If R and S are binary relations, R* is the transitive closure of R, R-1 is the
inverse of R, and

RS {(u, w)lZlv((u, v) R & (v, w) e S)}.

* Received by the editors August 30, 1971, and in revised form March 9, 1972.

" Department of Computer Science, Cornell University, Ithaca, New York 14850. This research
was supported by the Hertz Foundation and the National Science Foundation under Grant GJ-992.
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Ifff, f, are functions of x, x,, we sayfis O(f, f,) if

If(x,,..., x,)l <- ko + kllf,(x, x,)l + + k,lf,(x, x,)l
for all x and some constants ko, .", k,. We shall assume a random-access com-
puter model.

2. Depth-first search. Backtracking, or depth-first search, is a technique
which has been widely used for finding solutions to problems in combinatorial
theory and artificial intelligence [2], [11] but whose properties have not been
widely analyzed. Suppose G is a graph which we wish to explore. Initially all the
vertices of G are unexplored. We start from some vertex of G and choose an edge
to follow. Traversing the edge leads to a new vertex. We continue in this way;
at each step we select an unexplored edge leading from a vertex already reached
and we traverse this edge. The edge leads to some vertex, either new or already
reached. Whenever we run out of edges leading from old vertices, we choose some
unreached vertex, if any exists, and begin a new exploration from this point.
Eventually we will traverse all the edges of G, each exactly once. Such a process is
called a search of G.

There are many ways of searching a graph, depending upon the way in which
edges to search are selected. Consider the following choice rule: when selecting
an edge to traverse, always choose an edge emanating from the vertex most recently
reached which still has unexplored edges. A search which uses this rule is called a
depth-first search. The set of old vertices with possibly unexplored edges may be
stored on a stack. Thus a depth-first search is very easy to program either iteratively
or recursively, provided we have a suitable computer representation of a graph.

DEFINITION 1. Let G (, d) be a graph. For each vertex v U we may con-
struct a list containing all vertices w such that (v, w)e g. Such a list is called an
adjacency list for vertex v. A set of such lists, one for each vertex in G, is called an
adjacency structure for G.

If the graph G is undirected, each edge (v, w) is represented twice in an ad-
jacency structure; once for v and once for w. If G is directed, each edge (v, w) is
represented once vertex w appears in the adjacency list of vertex v. A single graph
may have many adjacency structures;in fact, each ordering of the edges around
the vertices of G gives a unique adjacency structure, and each adjacency structure
corresponds to a unique ordering of the edges at each vertex. Using an adjacency
structure for a graph, we can perform depth-first searches in a very efficient
manner, as we shall see.

Suppose G is a connected undirected graph. A search of G imposes a direction
on each edge of G given by the direction in which the edge is traversed when the
search is performed. Thus G is converted into a directed graph G’. The set of edges
which lead to a new vertex when traversed during the search defines a spanning
tree of G’. In general, the arcs of G’ which are not part of the spanning tree inter-
connect the paths in the tree. However, if the search is depth-first, each edge (v, w)
not in the spanning tree connects vertex v with one of its ancestors w.

DEFINITION 2. Let P be a directed graph, consisting of two disjoint sets of
edges, denoted by v w and v -- w respectively. Suppose P satisfies the following
properties:

(i) The subgraph T containing the edges v w is a spanning tree of P.
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(ii) We have-
___
()-1, where "" and "---." denote the relations defined

by the corresponding set of edges. That is, each edge which is not in the
spanning tree T of P connects a vertex with one of its ancestors in T.

Then P is called a palm tree. The edges v - w are called thefronds of P.
THEOREM 1. Let P be the directed graph generated by a depth-first search of a

connected graph G. Then P is a palm tree. Conversely, let P be any palm tree. Then P
is generated by some depth-first search of the undirected version of P.

Proof. Consider the program listed below, which carries out a depth-first
search of a connected graph, starting at vertex s, using an adjacency structure of the
graph to be searched. The program numbers the vertices of the graph in the order
they are reached during the search and constructs the directed graph (P) generated
by the search.

BEGIN
INTEGER i;
PROCEDURE DFS(v, u); COMMENT vertex u is the father of

vertex v in the spanning tree being constructed;

BEGIN
NUMBER (v):= := + 1;
FOR w in the adjacency list of v DO

BEGIN
IF w is not yet numbered THEN
BEGIN

construct arc v w in P;
DFS(w, v);

END

ELSE IF NUMBER (w) < NUMBER (v) and w u
THEN construct arc v- w in p;

END;
END;

i:=0;
DFS(s, 0);

END;

Figure gives an example of the application of DFS to a graph. Suppose
P (, ) is the directed graph generated by a depth-first search of some con-
nected graph G, and assume that the search begins at vertex s. Examine the proce-
dure DFS. The algorithm clearly terminates because each vertex can only be
numbered once. Furthermore, each edge in the graph is examined exactly twice.
Therefore the time required by the search is linear in V and E.

For any vertices v and w, let d(v, w) be the length of the shortest path between
v and w in G. Since G is connected, all distances are finite. Suppose that some vertex
remains unnumbered by the search. Let v be an unnumbered vertex such that
d(s, v) is minimal. Then there is a vertex w such that w is adjacent to v and d(s, w)
< d(s, v). Thus w is numbered. But v will aiso be numbered, since it is adjacent to w.
This means that all vertices are numbered during the search.
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(o)

(c)

D

/

(3)

e(2)

A(I)

G

(b)

(A,B)

(B,C)

(C,D)

(D,E)

(E ,F)

(F,A)

(F ,G)

(G,D)

(G,B)

(E,H)

(H,A)

(H,C)

FIG. 1. Application ofdepth-first search to a graph
(a) The graph
(b) Order of edge exploration
(c) Generated palm tree, with numbers of vertices in

The vertex s is the head of no edge w ---, s. Each other vertex v is the head of
exactly one edge w v. The subgraph T ofP defined by the edges v w is obvious-
ly connected. Thus T is a spanning tree of P.

Each arc of the original graph is directed in at least one direction;if (v, w)
does not become an arc of the spanning tree T, either v- w or w- v must be
constructed since both v and w are numbered whenever edge (v, w) is inspected and
either NUMBER (v) < NUMBER (w) or NUMBER (v) > NUMBER (w).

The arcs v -, w run from smaller numbered points to larger numbered points.
The arcs v---. w run from larger numbered points to smaller numbered points.
If arc v- w is constructed, arc w --, v is not constructed later because v is num-
bered. If arc w --, v is constructed, arc v- w is not later constructed, because of
the test "w-- u" in procedure DFS. Thus each edge in the original graph is
directed in one and only one direction.

Consider an arc v-- w. We have NUMBER (w) < NUMBER (v). Thus w
is numbered before v. Since v---, w is constructed and not w ---, v, v must be num-
bered before edge (w, v) is inspected. Thus v must be numbered during execution



150 ROBERT TARJAN

of DFS (w,-). But all vertices numbered during execution of DFS (w,-) are
descendants of w. This means that w v, and G is a palm tree.

Let us prove the converse part of the theorem. Suppose that P is a palm tree,
with spanning tree T and undirected version G. Construct an adjacency structure
of G in which all the edges of T appear before the other edges of G in the adjacency
lists. Starting with the root of T, perform a depth-first search using this adjacency
structure. The search will traverse the edges of T preferentially and will generate
the palm tree P; it is easy to see that each edge is directed correctly. This completes
the proof of the theorem.

We may state Theorem 1 nonconstructively as the following corollary.
COROLLARY 2. Let G be any undirected graph. Then G can be converted into a

palm tree by directing its edges in a suitable manner.

3. Bieonnectivity. The value of depth-first search follows from the simple
structure of a palm tree. Let us consider a problem in which this structure is
useful.

DEFINITION 3. Let G (, ) be an undirected graph. Suppose that for each
triple of distinct vertices v, w, a in, there is a path p’v : w such that a is not on the
path p. Then G is bieonnected. (Other equivalent definitions of biconnectedness
exist.) If, on the other hand, there is a triple of distinct vertices v, w, a in such that a
is on any path p’v = w, and there exists at least one such path, then a is called an
articulation point of G.

LEMMA 3. Let G (, ) be an undirected graph. We. may define an equivalence
relation on the set of edges as follows’two edges are equivalent if and only if they
belong to a common cycle. Let the distinct equivalence classes under this relation
be , <_ <= n, and let Gi (/, ), where is the set of vertices incident to the
edges of; {c] lw((v, w) )}. Then"

(i) Gi is biconnected, for each 1 <= <= n.
(ii) No G is a proper subgraph ofa biconnected subgraph of G.

(iii) Each articulation point of G occurs more than once among the /, 1 <__ < n.
Each nonarticulation point of G occurs exactly once among the
l<i<n.

(iv) The set f’l contains at most one point, for any 1 <= i, j <= n. Such a
point of intersection is an articulation point ofthe graph.

The subgraphs G of G are called the biconneeted components of G.
Suppose we wish to determine the biconnected components of an undirected

graph G. Common algorithms for this purpose, for instance, Shirey’s [14], test
each vertex in turn to discover if it is an articulation point. Such algorithms require
time proportional to V. E, where V is the number of vertices and E is the number
of edges of the graph. A more efficient algorithm uses depth-first search. Let P be a
palm tree generated by a depth-first search. Suppose the vertices of P are num-
bered in the order they are reached during the search (as is done by the procedure
DFS above). We shall refer to vertices by their numbers. If u is an ancestor of v
in the spanning tree T of P, then u < v. For.any vertex v in P, let LOWPT (v) be

* w} That is, LOWPT(v) is thethe smallest vertex in the set {v} U {w[v --smallest vertex reachable from v by traversing zero or more tree arcs followed by at
most one frond. The following results form the basis of an efficient algorithm
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for finding biconnected components. This algorithm was discovered by Hopcroft
and Tarjan [4]. Paton [12] describes a similar algorithm.

LEMMA 4. Let G be an undirected graph and let P be a palm tree formed by
directing the edges of G. Let T be the spanning tree of P. Suppose p’v w is any
path in G. Then p contains a point which is an ancestor ofboth v and w in T.

Proof. Let T with root u be the smallest subtree of T containing all vertices
on the path p. If u v or u w, the lemma is immediate. Otherwise, let Tul and
be two distinct subtrees containing points on p such that u u and u--. u2.
If only one such subtree exists, then u is on p since T, is minimal. If two such sub-
trees exist, path p can only get from T,1 to T,2 by passing through vertex u, since
no point in one of these trees is an ancestor of any point in the other, while both
---, and - connect only ancestors in a palm tree. Since u is an ancestor of both v
and w, the lemma holds.

LEMMA 5. Let G be a connected undirected graph. Let P be a palm tree formed
by directing the edges of G, and let T be the spanning tree of P. Suppose a, v, w are
distinct vertices of G such that (a, v) T, and suppose w is not a descendant of v in T.
(That is,---(v w) in T.) IfLOWPT (v) >= a, then a is an articulation point ofP and
removal of a disconnects v and w. Conversely, if a is an articulation point of G,
then there exist vertices v and w which satisfy the properties above.

Proof. If a v and LOWPT (v) _>_ a, then any path from v not passing through
a remains in the subtree Tv, and this subtree does not contain the point w. This
gives the first part of the lemma.

To prove the converse, let a be an articulation point of G. If a is the root
of P, then at least two tree arcs must emanate from a. Let v be the head of one
such arc and let w be the head of another such arc. Then a v, LOWPT (v) => a,
and w is not a descendant of v. If a is not the root of P, consider the connected
components formed by deleting a from G. One component must consist only of
descendants of a. Such a component can contain only one son of v by Lemma 4.
Let v be such a son of a. Let w be any proper ancestor of a. Then a v, LOWPT (v)
__> a, and w is not a descendant of v. Thus the converse part of the lemma is
true.

COROLLARY 6. Let G be a connected undirected graph, and let P be a palm
treeformed by directing the edges of G. Suppose that P has a spanning tree T. IfC is a
biconnected component of G, then the vertices of C define a subtree of T, and the
root of this subtree is either an articulation point of G or is the root of T.

Figure 2 shows a graph, its LOWPT values, articulation points, and bi-
connected components. The LOWPT values of all the vertices of a palm tree P
may be calculated during a single depth-first search, since

LOWPT (v) min ({NUMBER (v)} U {LOWPT (w)lv -- w}(J {NUMBER (w)lv- w}).

On the basis of such a calculation, the articulation points and the biconnected
components may be determined, all during one search. The biconnectivity algo-
rithm is presented below. The program will compute the biconnected components



152 ROBERT TARJAN

4

5

:6

(o)

4 E2] 6 CI]
9 [7]

//.,"

C3"

(b)

3 8

9
5

2 6

(c)
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of a graph G, starting from vertex s.

BEGIN
INTEGER i;
procedure BICONNECT (v, u);

BEGIN
NUMBER(v)’= i’= i+ 1;
LOWPT (v) NUMBER (v);
FOR w in the adjacency list of v DO

BEGIN
IF w is not yet numbered THEN

BEGIN
add (v, w) to stack of edges;
BICONNECT (w, v)
LOWPT (v) "= min (LOWPT (v), LOWPT (w));
IF LOWPT (w) _>_ NUMBER (v) THEN
BEGIN

start new biconnected component;
WHILE top edge e (u l, u2) on edge

stack has NUMBER (u l)
_>_ NUMBER (w) DO

delete (u, u2) from edge stack and
add it to current component;

delete (v, w) from edge stack and add
it to current component;

END;
END

ELSE IF (NUMBER (w) < NUMBER (v)) and
(w---n u) THEN

BEGIN
add (v, w) to edge stack;
LOWPT(v) "= min(LOWPT(v), NUMBER(w));

END;
END;

END;
"=0;

empty the edge stack;
FORw a vertex DO IF w is not yet numbered THEN BICONNECT (w, 0);

END;

The edges of G are placed on a stack as they are traversed; when an articula-
tion point is found the corresponding edges are all on top of the stack. (If (v, w) e T
and LOWPT(w)_> LOWPT(v), then the corresponding biconnected com-
ponent contains the edges in {(u, Uz)lW u} U {(v, w)} which are on the edge
stack.) A single search on each connected component of a graph G will give us all
the connected components of G.

THEOREM 7. The biconnectivity algorithm requires O(V, E) space and time
when applied to a graph with V vertices and E edges.
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Proof. The algorithm clearly requires space bounded by klV + k2E -t- k 3,

for some constants k l, k2, and k3. The algorithm is an elaboration of the depth-
first search procedure DFS. During the search, LOWPT values are calculated
and each edge is placed on the edge stack once and removed from the edge stack
once. The amount of extra time required by these operations is proportional to E.
Thus BICONNECT has a time bound linear in V and E.

THEOREM 8. The biconnectivity algorithm correctly gives the biconnected
components of any undirected graph G.

Proof. The actual depth-first search undertaken by the algorithm depends
on the adjacency structure chosen to represent G; we shall prove that the algorithm
is correct for all adjacency structures. Notice first that the biconnectivity algorithm
analyzes each connected component of G separately to find its biconnected com-
ponents, applying one depth-first search to each connected component. Thus we
need only prove that the biconnectivity algorithm works correctly on connected
graphs G.

The correctness proof is by induction on the number of edges in G. Suppose G
is connected and contains no edges. G either is empty or consists of a single point.
The algorithm will terminate after examining G and listing no components.
Thus the algorithm operates correctly in this case. Now suppose that the algorithm
works correctly on all connected graphs with E- or fewer edges. Consider
applying the algorithm to a connected graph G with E edges.

Each edge placed on the stack of edges is eventually removed and added to a
component since everything on the edge stack is removed whenever the search
returns to the root of the palm tree of G. Consider the situation when the first
component G’ is formed. Suppose that this component does not include all the
edges of G. Then the vertex v currently being examined is an articulation point
of the graph and separates the edges in the component from the other edges in the
graph by Lemma 5.

Consider only the set of edges in the component. If BICONNECT (v, 0) is
executed, using the graph G’ as data, the steps taken by the algorithm are the same
as those taken during the analysis of the edges of G’ when the data consists of the
entire graph G. Since G’ contains fewer edges than G, the algorithm operates
correctly on G’ and G’ must be biconnected. If we delete the edges of G’ from G,
we get another subgraph G" with fewer edges than G since G’ is not empty. The
algorithm operates correctly on G" by the induction assumption. The behavior of
the algorithm on G is simply a composite of its behavior on G’ and on G"; thus
the algorithm must operate correctly on G.

Now suppose that only one component is found. We want to show that in
this case G is biconnected. Suppose that G is not biconnected. Then G has an
articulation point a. By Lemma 5, LOWPT (v)>_ a for some son v of a. But
the articulation point test in the program will succeed when the edge (a, v) is
examined, and more than one biconnected component will be generated. This
contradiction shows that G is biconnected, and the algorithm works correctly
in this case.

By induction, the biconnectivity algorithm gives the correct components
when applied to any connected graph, and hence when applied to any
graph.
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4. Strong connectivity. The biconnectivity algorithm shows how useful
depth-first search can be when applied to undirected graphs. However, when a
directed graph is searched in a depth-first manner, a simple palm tree structure
does not result, because the direction of search on each edge is fixed. The more
complicated structure which results in this case is still simple enough to prove
useful in at least one application.

DEFINITION 4. Let G be a directed graph. Suppose that for each pair of vertices
v, w in G, there exist paths P :/) *= W and p2"w *= t. Then G is said to be strongly
connected.

LEMMA 9. Let G (, ) be a directed graph. We may define an equivalence
relation on the set of vertices as follows" two vertices v and w are equivalent if there
is a closed path p’v v which contains w. Let the distinct equivalence classes under
this relation be i, 1 <_ <= n. Let G (/, ), where /= {(v, w) olv, w /}.
Then"

(i) Each G is strongly connected.
(ii) No Gi is a proper subgraph ofa strongly connected subgraph of G.
The subgraphs Gi are called the strongly connected components of G.
Suppose we wish to determine the strongly connected components of a

directed graph. This problem is related to the problem of determining the ergodic
subchains and transient states of a Markov chain. Fox and Landy [1] give an
algorithm for solving the latter problem; Purdom [13] and Munro [10] prese.nt
virtually identical methods for solving the former problem. These algorithms use
depth-first search. Purdom claims a time bound of kl/rE for his algorithm; Muhro
claims k max (E, Flog V), where the graph has V vertices and E edges. Their
algorithm attempts to construct a cycle by starting from a point and beginning a
depth-first search. When a cycle is found, the vertices on the cycle are marked as
being in the same strongly connected component and the process is repeated.
The algorithm has the disadvantage that two small strongly connected components
may be collapsed into a bigger one; the resultant extra work in relabeling may
contribute ,z2 steps using a simple approach, or Flog F steps if a more sophisti-
cated approach is used (see Munro [10]). In fact, the time bound may be reduced
further if an efficient list merging algorithm [9] is used. However, a more careful
study of what a depth-first search does to a directed graph reveals that an O(F, E)
algorithm which requires no merging of components may be devised.

Consider what happens when a depth-first search is performed on a directed
graph G. The set of edges which lead to a new vertex when traversed during the
search form a tree. The other edges fall into three classes. Some are edges running
from ancestors to descendants in the tree. These edges may be ignored, because
they do not affect the strongly connected components of G. Some edges run from
descendants to ancestors in the tree; these we may callfronds as above. Other edges
run from one subtree to another in the tree. These, we call cross-links. It is easy to
verify that if the vertices of the tree are numbered in the order they are reached
during the search, a cross-link (v, w) always has NUMBER (v) > NUMBER (w).
We shall denote tree edges by v - w, and fronds and cross-links by v-- w.

Suppose G is a directed graph, to which a depth-first search algorithm is
applied repeatedly until all the edges are explored. The process will create a set
of trees which contain all the vertices of G, called the spanning forest F of G, and
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sets of fronds and cross-links. (Other edges are thrown away.) A directed graph
consisting of a spanning forest and sets of fronds and cross-links is called a jungle.
Suppose the vertices are numbered in the order they are reached during the search
and that we refer to vertices by their number. Then we have the following results.

LEMMA 10. Let v and w be vertices in G which lie in the same strongly connected
component. Let F be a spanningforest of G generated by repeated depth-first search.
Then v and w have a common ancestor in F. Further, if u is the highest numbered
common ancestor of v and w, then u lies in the same strongly connected component
as v and w.

Proof. Without loss of generality we may assume v =< w. Let p be a path from
v’ to w in G. Let T with root u be the smallest subtree of a tree in F containing all
the vertices in p. There must be such a tree, since p can pass from one tree in F to
another tree with smaller numbered vertices but p can never lead to a tree with
larger numbered vertices. If p were contained in two or more trees of F, it could
not end at w, since v =< w.

Thus T, exists, and v and w have a common ancestor in F. In fact, p must pass
through vertex u, by a proof similar to the proof of Lemma 4, and u, v, w must all
be in the same strongly connected component. This gives the lemma.

COROLLARY 11. Let C be a strongly connected component in G. Then the vertices

ofC define a subtree ofa tree in F, the spanning forest of G. The root of this subtree
is called the root of the strongly connected component C.

The problem of finding the strongly connected components of a graph G
thus reduces to the problem of finding the roots of the strongly connected com-
ponents, just as the problem of finding the biconnected components of an un-
directed graph reduces to the problem of finding the articulation points of the
graph. We can construct a simple test to determine if a vertex is the root of a
strongly connected component. Let

LOWLINK (v) min ({v} (.J {wlv - w & :lu (u v & u *-} w & u and w

are in the same strongly connected component of G)}).
That is, LOWLINK (v) is the smallest vertex which is in the same component as v
and is reachable by traversing zero or more tree arcs followed by at most one
frond or cross-link.

LEMMA 12. Let G be a directed graph with LOWLINK defined as above relative
to some spanning forest F ofG generated by depth-first search. Then v is the root of
some strongly connected component of G if and only if LOWLINK (v) v.

Proof. Obviously, if v is the root of a strongly connected component C of G,
then LOWLINK (v) v, since if LOWLINK(v) < v, some proper ancestor of v
would be in C and v could not be the root of C.

Consider the converse. Suppose u is the root of a strongly connected com-
ponent C of G, and v is a vertex in C different from u. There must be a path p’v u.
Consider the first edge on this path which leads to a vertex w not in the subtree To.

This edge is either a vine or a cross-link, and we must have LOWLINK (v) =< w
< v, since the highest numbered common ancestor of v and w is in C.

Figure 3 shows a directed graph, its LOWLINK values, and its strongly
connected components. LOWLINK may be calculated using depth-first search.
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An algorithm for computing the strongly connected components of a directed
graph in O(V, E) time may be based on such a calculation. An implementation of
such an algorithm is presented below. The points which have been reached during
the search but which have not yet been placed in a component are stored on a
stack. This stack is analogous to the stack of edges used by the biconnectivity
algorithm.

BEGIN
INTEGER i;
PROCEDURE STRONGCONNECT (v);

BEGIN
LOWLINK (v) := NUMBER (v) := := + 1;
put v on stack of points;
FOR w in the adjacency list of v DO

BEGIN
IF w is not yet numbered THEN
BEGIN comment (v, w) is a tree arc;

STRONGCONNECT (w);
LOWLINK (v) := min (LOWLINK (v),

LOWLINK (w));
END

ELSE IF NUMBER (w) < NUMBER (v) DO
BEGIN comment (v, w) is a frond or cross-link;

if w is on stack of points THEN
LOWLINK (v) := min (LOWLINK (v),

NUMBER (w));
END;

END;

END;
i’=0;

If (LOWLINK (v) NUMBER (v)) THEN
BEGIN comment v is the root of a component;

start new strongly connected component;
WHILE w on top of point stack satisfies

NUMBER (w) _>_ NUMBER (v) DO
delete w from point stack and put w in

current component
END;

empty stack of points;
FORwa vertex IF w is not yet numberedTHEN STRONGCONNECT(w);

END;
THEOREM 13. The algorithm forfinding strongly connected components requires

O(V, E)space and time.

Proof. The algorithm clearly requires space bounded by k V + kzE + k3,
for some constants kl, k2, and k3. The algorithm is an elaboration of the depth-
first search procedure DFS, modified to apply to directed graphs. During the
search, LOWLINK values are calculated, each point is placed on the stack of
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points once, and each point is removed from the stack of points once. Testing to
see if a vertex is on the point stack can be done in a fixed time if a Boolean array
is kept which answers this question for each vertex. The amount of extra time
required by these operations is linear in V and E. Thus STRONGCONNECT
has a time bound linear in V and E.

THEOREM 14. The algorithm for finding strongly connected components works
correctly on any directed graph G.

Proof. We prove by induction that the calculation of LOWLINK (v) is
correct. Suppose as the induction hypothesis that for all vertices v such that v is a
proper descendant of vertex k or v < k, LOWLINK (v) is computed correctly.
This means that the test to determine if v is the root of a component is performed
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correctly for all such vertices v. The reader may verify that this somewhat strange
induction hypothesis corresponds to considering vertices in the order they are
examined for the last time during the depth-first search process.

Consider vertex v k. Let v W and let Wl- w2 be a vine or cross-link
such that w2 < v. If vertices v and w2 have no common ancestor, then before vertex
v is reached during the search, vertex w2 must have been removed from the stack of
points and placed in a component. (The smallest numbered ancestor of vertex w2
must be a component root.) Thus edge w ---’ w2 does not enter into the calculation
of LOWLINK (v).

Otherwise, let u be the highest common ancestor of v and w2. Vertex v is also
the highest common ancestor of w and w2. If u is not in the same strongly con-
nected component as w2, then there must be a strongly connected component root
on the tree path u w2. Since w2 < v, this root was discovered and w2 was
removed from the stack of points and placed in a component before the edge
W --’ W2 is traversed during the search. Thus Wl- w2 will not enter into the
calculation of LOWLINK (v). (This can only happen if w ---, w2 is a cross-link.)
On the other hand, if u is in the same strongly connected component as w2, there
is no component root r---n u on the branch u *-* w2, and v---, w2 will be used to
calculate LOWLINK (w2), and also LOWLINK (v), as desired. Thus LOW-
LINK (v) is calculated correctly, and by induction LOWLINK is calculated cor-
rectly for all vertices.

Since the algorithm correctly calculates LOWLINK, it correctly identifies
the roots of the strongly connected components. If such a root u is found, the
corresponding component contains all the descendants of u which are on the
stack of points when u is discovered. These vertices are all on top of the stack of
points, and are all put into a component by STRONGCONNECT. Thus
STRONGCONNECT works correctly.

5. Further applications. We have seen how the depth-first search method may
be used in the construction of very efficient graph algorithms. The two algorithms
presented here are in fact optimal to within a constant factor, since every edge and
vertex of a graph must be examined to determine a solution to one of the problems.
(Given a suitable theoretical framework, this statement may be proved rigor-
ously.) The similarity between biconnectivity and strong connectivity revealed
by the depth-first search approach is striking. The possible uses of depth-first
search are very general, and are certainly not limited to the examples presented.
Hopcroft and Tarjan have constructed an algorithm for finding triconnected
components in O(V,E) time by extending the biconnectivity algorithm [8].
An algorithm for testing the planarity of a graph in O(V) time [15] is also based on
depth-first search. Combining the connectivity algorithms, the planarity algorithm,
and an algorithm for testing isomorphism of triconnected planar graphs [7],
we may construct an algorithm to test isomorphism of arbitrary planar graphs in
O(Vlog V) time [8]. Depth-first search is a powerful technique with many applica-
tions.
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A NOTE ON MERGING*

ALAN G. KONHEIMf

Abstract. This paper studies the merging operation when data is stored on the surfaces of a disk.
The data consists of q lists (each of n numbers) stored on a disk. Each list is stored on one surface
of a disk. The time needed to merge into a single (sorted) list, T, is a function of the required motion
of the reading head. In this paper we calculate the expected value of T.

Key words. Merging, sorting.

In this note we shall calculate the "time" needed to carry out a merging
operation. It represents an idealization of the type of operation employed in a
computer in the sorting of numerical data.

Let {Xi,j’i 1, ..., q, j 1,..., n} be N nq numbers which are "stored"
as q lists (ofn numbers each). We assume that each ofthe q sequences Xi,1, ..-, X;,,
are in their natural order and that all of the numbers {Xi,j} are distinct. To merge
the q lists is to form the sequence {X’i 1, ..., N} obtained by arranging in
natural order the numbers {Xi,j}. We define the position vector v (Vi, 1, Vi,Z) by

Xi--Xi, lVi,2

where V,l is the number of the list containing the entry X and vi,2 is the rank of
Xi within this list. The "time" needed to merge these q lists is defined as

N-1

Z [Vi,2 V(i+I),2["
i=l

In order to see the relationship between z and time, we digress briefly in order to
describe the physical nature of the storage and merging process.

The q lists are stored on the surfaces of a device called a disk pack (Fig. 1).
This device consists of a number of storage surfaces which are divided into tracks.
Information is written magnetically on these tracks. The basic unit of data is a
record consisting of a numerical key (our numbers {Xi,j}) together with supple-
mentary data. In this analysis we assume:

(i) one record is stored per track;
(ii) the records corresponding to the keys in one list are stored on con-

secutive tracks on the same storage surface; and
(iii) distinct lists are stored on different storage surfaces.

Access to the contents of a disk pack is provided through a collection of reading
heads, with one head for each storage surface of the disk. The heads move together
radially so that they can read from the corresponding track on any storage surface.
Only one of the heads can be active (and read) at a time. To read from a different
track requires the radial motion of the entire collection of heads.

The sorting of records consists of two phases:
(a) the production of strings of records, whose keys are in their natural order,

and the writing of these strings on a single surface of the disk pack;

* Received by the editors June 2, 1970, and in revised form October 9, 1970.

f Thomas J. Watson Research Center, IBM Corporation, Yorktown Heights, New York 10598.
This research was supported in part by the United States Air Force under Contract AF 49(638)-1682.
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Reading -Track

Storage surface

DISK PACK
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(b) the merging of the resulting strings.
Our analysis is concerned with the second phase of the sorting operation.

Note that we have made the simplifying assumption that the strings have a common
length.

The coordinates of the position vector vi give the number of the surface on
which the record with key Xi is stored and the corresponding track number. The
quantity corresponds to the total (radial) movement of the reading heads.

Since only the relative ordering ofthe numbers { Xi,j} is relevant to the analysis,
we may assume that {Xi,j 1, 2, ..., N}. We need to specify now the process
by which the q lists are formed. The q lists are determined by a chance experiment.
We choose with the uniform distribution q subsets of size n from the set
{ 1, 2, ..., N}. There are (qn)!/(n !)q such subdivisions and we postulate that all are
equally probable.

LEMMA 1.

q(qn- 1)
Pr {vi, =/, v(i+ 1),1 ’}

n-1
q(qn- 1)

Proof Suppose first that /t # " the /tth list, u, contains n 1 elements

different from and + and these may be selected in ways. Similarly,

2’ contains n 1 elements different from and + 1 and these may be chosen

from the remaining (q 1)n 1 elements in
q n

ways. But the number
n-1

ofwaysofselectingtwosubsetsofsizenfromasetofnqelementsis qnn){q
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and this yields the assertion for # 4= (. Finally we note that

q(q 1)
q(qn- 1)

+ q Pr {vi,1 v(i+l),l 1} 1,

which completes the proof.
LEMMA 2. If# 4= (, then the conditional probability

is given by

Pr {vi,2 v(i+ 1),2 -m/vi,1 1, v(i+ 1),1 (}

f(i,a,m)

with

and where the summation is over all integers afor which all binomial coefficients have
nonnegative arguments.

Proof. We can picture the situation as follows"

G2--a sequence of n a 1
numbers each >i + 1

i+1

Glma sequence of a numbers
each <

G,--a sequence of n a rn 1
numbers each >i +

G3--a sequence of a + rn numbers
each <

We then

(i) choose the a numbers in G1 in ways;thereafter
a

(ii) choose the a + m numbers in G3 in ways; thereafter
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(iii) choose the n a lnumbersinG2in(qn-i -) ways; and finally,
n-a-

qn
(iv) choose then a m 1 numbers in G4 in ways.

n-a-m- 1!
Thusf(i, a, m) is the number of such configurations with the value a. Finally, there

are ways of choosing the elements of . and thereafter
n n-1

ways of choosing the elements of
We note for further reference the following lemma.
LMMA 3.

Pr {vi,2 vi+ 1),2 --m/vi,1 (i+ 1),1 /) m,l"
THEOREM.

--1

E(’c)=(qn- 1)
qn- 1 i )1qn 22n-3

+
qn 1 2n -.S

4
n asno.

Proof. We shall first evaluate the sum Z, ,. Za f(i, a, m)[m] by interchanging
the order of summation. First we write f(i, a, m) in the equivalent form

f(i’a’m)=(2a+m)a 2n- 2a- rn- 2

n-a-m-l!

i-1

2a+m

qn-i- 1 ).2n- 2a- m- 2

We first sum over i. We may assume that m >= 0 noting that under the condition
Vi, # vti+ x),, the random variable v,2 v,+ 1),2 has a symmetric distribution. We
use the formula [1, p. 35]

(1)
=o s r+s+l

which is a little known variant of the Vandermonde convolution. From (1) we find

f(i,a,m)=(2a+m)a n-a-m-1 2n

Next we use a formula of Jensen [1, pp. 148, 170]"

=o j -j (x+y-J)zi=o -j

obtaining

ZZf(i,a,m)
2n 1 i=o

2
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This latter sum can be written in a different form; we use the formula

(3t x (x +
=o j =o j

which is a direct consequence of(1 (ifwe expand (x + 1) by the binomial theorem).
This yields

f(i,a,m)= (qn-1 "-x 2n-1

2n 1 i=o j

It remains to multiply by m and carry out the summation over m. We have

=o 2n =o j 2 2n 1

Now

where

and thus

2,, 1/2n(n 1)q.(1) 1/2(2n 1)r/’,(1) + [r/,(1) +

2n-1

j=O

2n
x (1 + x)2h-

J

Finally we have by Lemma 1,

E{lvi,2-vti+x),2l;v,,x :/: v,i+x),x} =(q-1)n n-1

2n

Adding to this the term

E{i 1)i,2- v(i+l),2l;Vi,1--v(i+l),l}
(which is n 1 by Lemmas 1 and 3), we finally obtain

E Iv,-v+,l =(n- 1) 1 +2n_ 1

Using the asymptotic estimate

(2rr) 22,(tr)- 1/2

we get

asr- ,

22n 3

2n-n 11)"

as n.
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COMPUTATIONAL COMPLEXITY OF ITERATIVE PROCESSES*

J. F. TRAUB-

Abstract. The theory of optimal algorithmic processes is part of computational complexity.
This paper deals with analytic computational complexity. The relation between the goodness of an itera-
tion algorithm and its new function evaluation and memory requirements are analyzed. A new con-
jecture is stated.

Key words, computational complexity, optimal algorithm, optimal iteratiola, numerical mathe-
matics, iteration theory.

1. Introduction. Computational complexity is one of the foundations of
theoretical computer science. The phrase computational complexity seems to have
been first used by Hartmanis and Stearns [12] in 1965 although the first papers
belonging to the field are those of Rabin [28], [29] in 1959 and 1960.

One of its important components is the theory of optimal algorithmic pro-
cesses. We distinguish between optimality theory for algebraic (or combinatorial)
processes, which we. call algebraic computational complexity, and optimality
theory for analytic (or continuous) processes, which we call analytic computational
complexity.

The last few years have witnessed striking developments in algebraic compu-
tational complexity; for example, the multiplication of numbers (Cook [6],
Sch6nhage and Strassen [31]), the multiplication of matrices (Winograd [41],
Strassen [32], Hopcroft and Kerr [14]), polynomial evaluation (Winograd [41]),
median of a set of numbers (Floyd [10]), graph planarity (Hopcroft and Tarjan
[15]). Surveys may be found in Knuth [19], Borodin [1], and Minsky [24].

Research on analytic computational complexity dates to the early sixties
(Traub [33]-39]) and predates most of the algebraic results. More specifically, the
work on analytic computational complexity to date has concerned optimal
iteration. Recent results are due to Brent [2], Cohen [3], Cohen and Varaiya [4],
Feldstein [7], Feldstein and Firestone [8], [9], Hindrnarsh [13], Jarratt [16],
King [18], Kung [21], Miller [22], [23], Paterson 27], Rissanen [30], and Winograd
and Wolfe 42], [43]. (Kung and Paterson’s results are summarized at the end of
2.)

In this paper we define basic concepts and pose some fundamental questions
in optimal iteration. In the terminology of Knuth [20] we perform a Type B
analysis. That is, we consider a family of algorithms for solving a particular
problem and select the "best possible." We survey earlier work, report recent
progress, and state a new conjecture. Since the field is changing rapidly, some ofthe
results cited have not yet appeared in the open literature. An abbreviated version
ofthis material was presented (Traub [40]) at the IFIP 71 Congress, with somewhat
different terminology and notation.

* Received by the editors March 8, 1972.

f Computer Science Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213.
This research was supported in part by the Office of Naval Research under Contract N 00014-67-A-
0314-0010, NR 044-422, and by the Advanced Research Projects Agency under Contract F44620-70-C-
0107.
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This paper is intended for the nonspecialist in iteration theory and therefore
some precision in definitions and some generality in the models of iteration algo-
rithms are sacrificed.

2. Basic concepts. We begin by specifying the problem. Let Fdenote the class
of infinitely differentiable real functions defined on the real line. We assume that if
f F, then fhas at least one simple zero , that is, a number such that f() 0,
f’() 4= 0. The assumption of infinite differentiability is for simplicity. For any
algorithm we shall discuss, f need only have a small number of derivatives on a
finite interval.

Our problem is to approximate for fe F. This zero-finding problem may
seem rather specialized, but, in fact, it is equivalent to the fixed-point problem ofcal-
culating a number such that g(), a ubiquitous problem in mathematics and
applied mathematics. It may be formulated in an abstract setting and covers partial
differential equations, integral equations, boundary value problems for ordinary
differential equations as well as many other important problems (Collatz [5]).

We consider iterative algorithms for the approximation of . A sequence of
approximating iterates {x} is generated by an iteration function. We shall not
give a formal definition of iteration algorithm. The interested reader may consult
Ortega and Rheinboldt [25] and Cohen and Varaiya [4].

Our aim is to discuss optimal iteration algorithms. There are a number of
measures we could optimize. For example, we could minimize the total number
ofarithmetic operations needed to approximate to within an error e. This measure
is strongly dependent on the particular fin question. For our current purpose, we
prefer a measure which is not so dependent on fand which is easier to calculate.
(At the end of this section we report recent optimality results which optimize
arithmetic operations.)

We introduce general measures ofcost and goodness. The cost consists of two
parts: the new evaluation cost e and the memory cost m.

DEFINITION. The new evaluation cost e is defined as the number ofnew function
evaluations required.

This definition is motivated by the following considerations. An iteration
step consists of two parts.

1. Calculate new function values.
2. Combine the data to calculate the next iterate.

Since the evaluation of functions requires invocation of subroutines whereas the
calculation of the next iterate requires only a few arithmetic operations, we neglect
the latter.

A function evaluation is the calculation off or one of its derivatives. Thus
if f(xi) and f’(xi) are required, e 2. We could assign a new evaluation cost of
0j for the evaluation offt) (Traub [39, p. 262]), but this would make the measure
f-dependent.

We turn to the second component of the cost.
DEFINITION. If previous function evaluations at x_ , ..., x_,, are used to

calculate xg+ , then we define m as the memory cost ofthe iteration.
Another component of the cost is not included in this paper. An iteration

such as the secant iteration involves the subtraction of quantities which are close



COMPUTATIONAL COMPLEXITY OF ITERATIVE PROCESSES 169

together, and to maintain accuracy, more precision should perhaps be carried.
The theory should be extended to include this cost.

We turn now to a measure of the goodness ofan iteration. Let xi --, .
DEFINITION. If there exists a number p such that

lim Ixi+l 1 A # O, ,-. Ix- 1
then p is called the order of the iteration.

This definition of order will serve for our purposes. For other definitions of
order the reader is referred to Ortega and Rheinboldt [25] and Cohen and Varaiya
[4].

This is a reasonable measure of goodness since if x is near , then xi+ has
about p times as many significant figures as x. A discussion may be found in
Traub [39, Appendix C].

The order has two additional properties which make it useful for our purposes.
It depends primarily on the algorithm and only weakly onfand it is fairly easy to
calculate. For example, for all twice continuously differentiable functions f for
whichf"() # 0, Newton iteration (see Example 1 below) has order p 2. (Recall
we are assuming throughout this paper thatf’() 4: 0.) Under the same conditions,
the secant iteration has order p (1 + v/) ___" 1.62.

Two widely known iteration algorithms may serve to illuminate these
definitions. We shall use them to introduce data flow charts which are a convenient
way to describe algorithms from our point of view.

Example 1. Newton iteration. Let x0 be given. Define

Xi + Xi
f(xi)

[xi, f(xi), f’(xi)].

The data flow chart of Fig. 1 exhibits the process at step i. For Newton iteration,

e=2, rn=0, p=2 (iff"(a):0).

Evaluate

f(x) f’(x)

Calculate

Xi+

FIG. 1. Dataflow chartfor Newton iteration
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Example 2. Secant iteration. Let x0, x x, be given. Define

(x, x_ 1)
xi + xi f(xi)

f(xi) f(xi- )

[xi, xi- x, f(xi), f(xi- 1)].

The data flow chart of Fig. 2 exhibits the process at step i. For secant iteration,

e= 1, m= 1, p=1/2(1 +x//)-" 1.62 (if/"() - 0).

Evaluate

f(xi)

Obtain from memory

x_ ,, f(x,_ ,)

Calculate

Xi+

FIG. 2. Dataflow chart for secant iteration

We now pose the following optimality questions which will be our focus for
the remainder of this paper. Other optimality problems will be discussed at the
end of this section.

2.1. Two optimality questions.
1. What is the maximal order Pe,m which can be achievedfor iterations which use

e newfunction evaluations and have memory m ?
2. What is the most that memory m is worth ? That is, what is Pe,m Pe,o ?
The answers depend on the class of iterations under study. Traub [39, 1.22]

introduced four classes depending on the function evaluation and memory require-
ments of the algorithms. These classes are:

one-point;
one-point with memory;
multipoint;
multipoint with memory.

We shall discuss optimality results for only the first three classes in this paper.
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These classes model algorithms appropriate for stationary iterations on
sequential machines. An iteration rule is stationary if it does not change from step to
step. A formal definition may be found in Ortega and Rheinboldt [25]. Because of
the assumption of sequential machine, the definition of one-point iteration with
memory ( 5) uses the same number of derivatives at each point. On parallel
machines we may want to vary the number of derivatives at each point. The case
where the number of derivatives varies is studied by Traub [39, pp. 60-65] and
Feldstein and Firestone [8].

Besides those posed earlier, we discuss some additional optimality questions.
An important measure of the goodness of an algorithm is the efficiency index
defined by

E (log2 p)/e.

This measure is defined without motivation by Ostrowski [26, Chap. 3]. A deriva-
tion may be found in Traub [39, Appendix C]. Gentleman [11] gives an axiomatic
treatment. A study of iterations with high values of the efficiency index is reported
by Feldstein and Firestone [9].

When we consider algorithms for a fixed problem, it becomes meaningful to
optimize relative to the number of arithmetic statements. Paterson [27] takes for
his efficiency measure

Ev (log2 p)/,

where p denotes the order and denotes the number of multiplications or di-
visions. He excludes from .M multiplication or division by a constant. Paterson
considers iterations q which have the following properties"

(i) 05 is a rational function;
(ii) b is univariate;

(iii) lim_.o x is an algebraic number;
(iv) b has rational coefficients.

Under these conditions, Paterson proves that E <__ 1.
The Newton iteration for the problemf x2 A (which converges to v/),

Xi + Xi +

has p 2, M 1. Hence E 1 which shows the result is sharp.
Kung [21] defines the multiplication efficiency

E (log2 p)/M,

where M is the total number of multiplications or divisions required. He removes
all restrictions on q5 except condition (i). Kung shows that E =< 1. Since condition
(i) is not a restriction for a computer algorithm, this is a very general result.

For the iteration
2

Xi + Xi Xi -which converges to -1/2, p 2, M 1. Hence E 1 which shows the bound is
sharp. On the other hand, E 1/2 for the Newton iteration for the square root in
Kung’s measure.
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Kung derives another interesting result. Let Pt denote the maximal order for
a sequence generated by an iteration with M multiplications. Then Pt =< 2M for
all positive integers M. Moreover, this bound is sharp.

3. Interpolatory iteration. Before discussing optimality results for classes of
iterations, we discuss particular families of iterations which play a special role in
the theory, the interpolatory iteration algorithms Ie,m introduced and analyzed
by Traub 38], [39]. For our purpose here, we need not know how formulas for
interpolatory iteration are derived. Indeed, there are two families of interpolatory
iterations derived from direct and inverse iteration. Both families have the same
order for a given e and rn and we shall not distinguish between them. In both
families, I2,o is Newton iteration and I1,1 is secant iteration.

For interpolatory iterations we have a complete theory relating order to
evaluation and memory costs. Let qe,m denote the order of an interpolatory
iteration Ie, Then we have the following basic result.

THEOREM (Traub [39, 3.3 and 6.1]). qe,o e. For all finite e and m > O,
e < qe,m < e + 1. For efixed, qe,m is a strictly increasingfunction ofm and

lim qe,m e + 1.
m--

This is a very satisfying result. It says that for interpolatory iteration, increasing
memory while keeping the number of new evaluations fixed always increases the
order.

The following is an important corollary.
COROLLARY (Traub [39, 6.1]). For allfinite m, qe,m- qe,o < 1.
Thus for interpolatory iterations memory adds less than unity to the order.
Upper and lower bounds on the order are given by the following theorems.

Xi + (e,oXi, f(xi), fe- 1)(xi)].
The data flow chart for a one-point iteration is given in Fig. 3.

Let

e,m-- e + 1 qe,m,

and let e denote the base of natural logarithms.
TI-IORM (Traub [39, 3.3]).

(e + 1)
< (e,m <

(e + 1)----"
A sharper result is given by the next theorem.
THEOREM (Kahan 17]).

(e+ 1)m+ 1 =(e+ 1)m+- 1- em/(e+ 1)"
Values of qe,m for small values of e and m may be found in Table 1.

4. One-point iteration.
DEFINITION. An iteration function belongs to the class of one-point iterations

if all new function evaluations are at the point x and if its memory m 0.
Thus
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TABLE
Values ofq

1.000
1.618
1.839
1.928

2.000
2.732
2.920
2.974

3.000
3.791
3.951
3.988

Xi

Evaluate

f(xi), ..., fte- t(xi)

xi+ e,o[x,f(x),..., f- 1)(xi)]

FIG. 3. Dataflow chartfor one-point iteration

For one-point iterations the first optimality question is settled by the theorem
below. Recall that Pe,m is the optimal order for an iteration characterized by new
function evaluations e and memory m.

THEOREM (Traub [33], [39, 5.4]).

5. One-point iteration with memory.
DEFINITION. An iteration function belongs to the class of one-point iterations

with memory if all new function evaluations are at the point xi and if its memory
m>0.

Thus

xi+ dPe.m[Xi, f(xi), f(e- )(xi) xi_ , f(xi ), f(e- )(xi_ ),

"’’, Xi-m, f(xi-m), fe- )(xi-re)I

The semicolon separates new function evaluations from those recovered from
memory. The data flow chart for a one-point iteration with memory is given in
Fig. 4.

The initial conjecture on optimality for this class was reported at the 1961
National ACM Conference.



174 J.F. TRAUB

Obtain from memory

xi-1, f(x_ 1), fe-

xi-,,, f(Xi-m), fe- 1)(Xi_,,

Calculate

Xi (I)e,m[Xi, f(xi), "", fte- 1)(Xi). Xi 1, "’’, f(e- 1)(Xi_m)]

FIG. 4. Dataflow chartfor one-point iteration with memory

CONJECTURE (Traub [33], [39, 6.3]). For all one-point iterations with finite
memory m,

Pe,m-Pe,o < 1.

Until the late sixties no progress was reported, but there have been exciting
recent results. The matter has been investigated by Winograd and Wolfe [42] who
assert a stronger result. Under weak conditions on the admissible iteration
functions, interpolatory iteration Ie, is optimal among all iterations characterized
by new function evaluations e and memory m. The truth of the conjecture then
follows from the corollary in 3.

Winograd and Wolfe 42] have pointed out an ambiguity in the notion of
memory since instead of using memory explicitly at each step, one can use it
implicitly by encoding it in other data. Cohen and Varaiya [4] cite an example of
such an encoding. Cohen and Varaiya deal with the ambiguity by adding a con-
dition to the definition of order which insures that encoding does not increase
the rate. Winograd and Wolfe [43] deal with the case where all past points are
remembered. This side-steps the encoding issues.

Rissanen [30] resolves the ambiguity by imposing a smoothness condition on
admissible algorithms. He proves that then the secant iteration (that is, the inter-
polatory iteration 11,1) has maximal order among all algorithms one with e 1,
m=l.
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6. Multipoint iteration. We summarize the situation for one-point iterations
with or without memory. A one-point iteration with e new function evaluations
(and therefore e 1 derivatives) is of order at most e. A one-point iteration with
memory with e new function evaluations (and therefore e- 1 derivatives) is
of order less than e + 1. Table 2 summarizes the situation.

TABLE 2
Summary offacts about iterationfunctions

One-point
One-point with memory

New function

evaluations

Highest

derivative

Optimal

order

e

<e+l

Is there a class ofiteration algorithms for which these restrictions do not hold?
An affirmative answer is provided by multipoint iterations (Traub [37], [39, 1.2]).

DEFINITION. An iteration function belongs to the class of multipoint iterations
if new function evaluations are made at more than one point and if its memory
m--0o

We shall confine ourselves to giving a general prescription and a data flow
chart of a multipoint iteration only for the case of a two-point iteration. Then

z ck[x, f(x), f(e 1)(Xi)],

Xi+ 9[Xi, f(xi), f(e- 1)(Xi) Zi f(zi), f(e2- 1)(Zi)].
The data flow chart is given by Fig. 5.

A fourth class of iterations, multipoint with memory, is defined by Traub
39, 1.2]. We shall not discuss multipoint iteration with memory here.

Table 2 lists two types of requirements, one on the total number of new func-
tion evaluations and a second on the highest derivative required. First we give
examples to show that the restriction on derivatives need not apply for multipoint
iterations.

Example 3.

xi- 2(x)+ ((x))’
dp(xi) xi f(x).

This is a particular case of the Steffensen-Householder-Ostrowski iteration
(Traub [39, Appendix D]). Note that no derivatives are used. Yet if f’()- 1,
p=2.

Example 4. Let L >= 3 be fixed and let

where
xi + dp[xi, f(xi), f’(xi), f(22),""", f(2L_ 1)],

2j 2j(Xi) 2j_ x(xi)
f(2j_ (xi)

f’(x)
j=2,...,L- 1,



176 J.F. TRAUB

Evaluate

f(xi),.." ftel-

Calculate

z [xi, f(x), f- )(x)]

Evaluate

f(zi), ft,2- )(zi)

Calculate

x+ O[x,f(x, ,f’- (xO, z, f(z, f-

FIG. 5. Dataflow chartfor two-point iteration

and

,(x) x.
This is a multipoint iteration based on L 1 points. The new function evaluations
are L 1 evaluations offand one off’. For all twice continuously differentiablef
for whichf"(e) - 0, this iteration is of order L (Traub [39, 8.34]).

These two examples show that for multipoint iterations there is no connection
between the highest derivative required and the order.

For these two examples, the order equals the number of new function evalu-
ations. Since we proved this was always the case for one-point iterations, we might
be tempted to suppose that this result holds for multipoint iterations also. That
this is not the case is shown by the following example.

Example 5.

f(xO
zi xi f’(xi)’

f(xi) [ f(z,)
x,+x x,

f’(x,) k2f(z,) f(x,)

The data flow chart is given in Fig. 6 and a picture in Fig. 7.
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Evaluate ",[f(xi), f’(xi)

Calculate

Zi

Evaluate

f(z,)

Calculate

Xi+

FIG. 6. An example ofa multipoint iteration

Xi+I
Zi Xi

FIG. 7. Geometric interpretation. D is the midpoint of the line between (zi, O) and (x, f(xi)).
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This iteration uses two evaluations offand one off’ and is of order 4. Jarratt
[16] has constructed a fourth order iteration using just two evaluations off’ and
one off. King [18] constructs a family offourth order methods which use two values
offand one value off’.

We turn to optimality considerations for multipoint iterations. As before
let Pe,o denote the maximal order for an iteration with new function evaluations
e and no memory. Ifwe permit only one-point or multipoint iterations (no memory),
we know that P2,o >- 2 (Newton iteration) and P3,o => 4 (Example 5 above).

NEW CONJEC:URE. For all one-point or multipoint iterations without memory,

P2,o=2, P3,o=4.
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ALGORITHMS FOR MINIMUM COLORING, MAXIMUM CLIQUE,
MINIMUM COVERING BY CLIQUES, AND MAXIMUM

INDEPENDENT SET OF A CHORDAL GRAPH*

FANICA GAVRILi

Abstract. A finite undirected graph is called chordal if every simple circuit has a chord. Given
a chordal graph, we present ways for constructing efficient algorithms for finding a minimum coloring,
a minimum covering by cliques, a maximum clique, and a maximum independent set. The proofs are
based on a theorem of D. Rose [33 that a finite graph is chordal if and only if it has some special orien-
tation called an R-orientation. In the last part of this paper we prove that an infinite graph is chordal if
and only if it has an R-orientation.

Key words. Chordal graph, maximum clique, maximum independent set, minimum coloring,
R-orientation.

1. Introduction. Let G be a finite undirected graph with no parallel edges and
no self-loops. A set of vertices in the graph is called independent if no two elements
of it are adjacent. A maximum independent set is one with the largest number of
vertices of all independent sets. A clique is a maximal completely connected set of
vertices; a maximum clique is one with a maximum size. If two vertices u, v are
connected, we denote this by u--v, and if not, by u-v.

A graph is called chordal if every simple circuit vl--Vz--V3 vt--vl,
with > 3, has a chord; that is, there exists an edge, not of the circuit, which
connects two of the circuit’s vertices. Some call the chordal graphs "triangu-
lated." However, the term has a somewhat similar, but different meaning in the
theory of planar graphs. If this terminology were accepted, it would allow valid
statements like: "Some planar triangulated graphs are not triangulated."

Chordal graphs arise in many contexts. Consider a finite family of intervals
on a linearly ordered set, and draw a graph in the following way the vertices repre-
sent the intervals, and two vertices are joined by an edge if the two corresponding
intervals intersect. Such a graph is called an interval graph. Haj6s [6] first put the
problem of characterizing an interval graph. Gilmore and Hoffman 7] gave a
complete characterization of interval graphs by showing that the interval graphs
are a special class of chordal graphs. A first problem is to find a maximum size set
ofintervals, such that no two intervals intersect. We find this by taking a maximum
independent set of vertices in the corresponding interval graph. Another problem
is to color the intervals with a minimum number of colors such that no two inter-
secting intervals have the same color. We do this by taking a minimum coloring
of the interval graph.

Other families of chordal graphs are the cactus graphs, which are the con-
nected graphs that do. not possess any cycle of length greater than three, and the
family of their adjoint graphs. For more detailed information on the properties and
applications of the chordal graphs, see also [1], [23 and [9].

We must remark that chordality and transitive orientability of graphs (dealt
with in I4]) are two independent properties. A quadrilateral without diagonals is

* Received by the editors November 1, 1971, and in revised form March 15, 1972.
]" Department of Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
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FIG.

transitively orientable and it is not chordal; on the other hand, the graph in Fig. 1
is chordal but it is not transitively orientable.

It is known that finite chordal graphs are perfect (see [1] and [2]). However,
we do not know ofany previous study ofefficient algorithms for finding a minimum
coloring, a maximum clique, a minimum covering by cliques, or a maximum
independent set of such graphs. Our first aim is to present an approach for con-
struction of algorithms for these four tasks. The algorithms used in the paper are
not necessarily most efficient but are simply being used to provide upper bounds
on the difficulty of algorithms resulting from the ideas in the paper.

The second aim is to generalize a theorem of Rose, by proving that an infinite
graph is chordal ifand only if it has an R-orientation. An orientation of the graph’s
edges is called an R-orientation if the following two conditions are satisfied:

(i) The resulting directed graph has no directed circuits.
(ii) If b a and c a, then b--c that is, either b c or c b.

Rose calls it "monotone transitive orientation." A vertex of an oriented graph is
called a "sink" if all the edges incident to the vertex enter it. It is clear that a finite
oriented graph without directed circuits has a sink.

Dirac [8], and later Rose [3], proved that every chordal graph has a vertex
such that the set of vertices adjacent to it form a completely connected set. Based
on this theorem, Rose showed that a finite graph is chordal if and only if it has an
R-orientation.

Consider any sink s ofan R-oriented finite graph. Since all the edges which are
incident to s enter s, all the adjacent vertices are connected to each other by edges.
If we remove s and all the incident edges, the resulting graph is still R-oriented,
and if its underlying undirected graph is chordal, the one for the original graph
is chordal too. Thus, by induction on the number ofvertices, R-orientability implies
chordality. Conversely, if the graph is chordal, then it has a vertex v such that the
set of its adjacent vertices form a completely connected set. By induction, the graph
obtainined by eliminating v and all its incident edges has an R-orientation. Now
return the vertex v to the graph and orient its incident edges towards it; we thus
obtain an R-orientation of the given graph.

Based on this proof, Fulkerson [9] and Rose [3] showed a simple way of con-
structing an R-orientation, if one exists, and thus provides an easy test for
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chordality. It runs as follows" Search for a vertex.v such that all the vertices
adjacent to it are connected to each other (or form a completely connected set).
Eliminate v and all the edges incident to it. Repeat the same step on the remaining
graph until only one vertex remains. Ifalong the way, before the number of vertices
is reduced to one, no such eliminatable vertex is found, the graph is not chordal.
If the process may be completed, then return the vertices one by one in the reverse
order, rebuilding the graph, and orient all edges incident to the reconstructed
vertex towards it. It is clear that the resulting orientation is an R-orientation. The
process is demonstrated on the following example.

Consider the graph described in Fig. 2. First, a can be eliminated, since all its
neighbors are connected to each other. Next, c can be eliminated, then, in order,
d,f, b, e, g. This is not the only order, and there is always more than one possible
order, if any order exists. Upon returning in order g, e, b,f, d, c, a, and directing
the reconstructed edges towards the new vertex, we get the graph of Fig. 3.

Let d be the maximum degree and n the number ofG vertices. In this algorithm
we test on n(n + 1)/2 vertices ifthe adjacent vertices ofany vertex form a completely
connected set. Hence the bound number of steps to finish the algorithm is

n(n + 1)d(d- 1) nd(n + 1)(d- 1)
2 2 4

The vertices of every directed graph with no directed circuits can be numbered
1, 2, ..., n, where n is the number of vertices, in such a way that all edges will be
directed from low to high. This can be done by successive elimination of sinks,
calling the first n, the second n 1, etc. Clearly, this can be done simultaneously
with the R-orientation. Our example, after renaming the vertices, is shown in
Fig. 4.

We shall assume, henceforth, that the given finite chordal graph has been
R-oriented, that its vertices are 1, 2, ..., n, and that all its edges are directed from

FIG. 2
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FG. 3

FIG. 4

low to high. We shall make use of these properties to answer questions about the
underlying undirected graph.

2. Algorithms for minimum coloration and maximum clique. Let be a vertex
of the graph. Denote by J the set of all vertices j such thatj ---, i. Since G is chordal
it is clear that Ji U {i} is a completely connected set of vertices. Furthermore, if
S is a completely connected set of vertices, then S J U {i} for some i; for let
be the greatest vertex in S, it follows that for every j Ji, j i.

The remark made above implies that every clique of G is of the form Ji LJ {i},
where is the greatest vertex of the clique. Thus, the number of cliques a finite
chordal graph can have is at most n. By taking only the maximals among the com-
pletely connected sets J U {i}, we obtain the set of all the cliques of G. Also, a maxi-
mum clique is easily found by finding a vertex with the largest in-degree dt(i)(di(i)
is the number ofedges which enter i). For every vertex we count the number ofenter-
ing edges hence the number of steps needed to find a maximum clique is at most
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n. max,vdi(i). In our example (Fig. 4), {1, 2, 3, 4}, {2, 3, 4, 5}, {1, 2, 4, 6},
{2, 4, 6, 7}, {1, 3, 4, 8} are all the cliques. The vertices 4, 5, 6, 7 and 8 all have in-
degree equal to three, and there is no vertex with a higher in-degree. Thus, all the
cliques of our example are maximum.

This algorithm for finding a maximum clique is easily extended to a weighted
graph; namely, one in which each vertex has a weight oi. The maximum weight
clique is found by computing for each vertex the value wi defined by

je(Jiw{i})

A vertex i, for which W is maximum, indicates a maximum weight clique, Ji U {i}.
It is interesting that the algorithm for minimum coloration oftransitive graphs

given in 4] is valid for R-oriented graphs too, but the proofofits validity is different.
The algorithm runs as follows:

In the kth stage we generate a minimum coloration of the vertex subgraph Gk.
(This is sometimes called the section subgraph its set of vertices is 1, 2, ..., k},
and its edges are those edges of G which connect vertices andj of this set.) Let this
minimum coloration be D (Akl A k k..., Am,,), where A ["] Aj !Z/if =/= j and
U mk k ({ 1}) We add vertex k + to this colora-i=1 Ai {1,2, ..., k}. Clearly, D1
tion by the following rule" Find the first A to which k + 1 can be added without
destroying its independence. If one is found, add k + to it to form Dk/ if none
is found, add a new set, ,t + {k + 1 } to form Dk / (clearly mk / =mk + 1)"-mk+

D is a minimum coloration of G. (This will be proved shortly.) Consider our
example of Fig. 4. We get:

D1 ({1}),

D2 ({1}, {2}),

D3 ({1}, {2}, {3}),

D4 ({1}, {2}, {3}, {4}),

D5 ({1,5}, {2}, {3}, {4}),
06 ({ l, 5}, {2}, {3, 6}, {4}),

Dv ({1,5, 7}, {2}, {3, 6}, {4}),

Da ({1,5,7), {2, 8}, {3, 6}, {4}).

To establish the validity of the algorithm, consider the first vertex to enter

A"m,. It was put there because it was connected to (lower vertices) vje A for
j 1,2,..., m_l, where m-i + 1 m,. Since all these edges are directed

v i, the set {vl,/)2, Vmi_, i} is a clique whose size is m,. Therefore, any
coloration must have at least m, sets and hence D, is a minimum coloration.

In the k + stage we search for every A’ to see whether it has a vertex con-
nected to the vertex k + 1; but the number of all the vertices in A], ..., Akmk is
exactly k, and therefore we need k steps to do it. Hence for a minimum coloration
we have at most n(n 1)/2 steps. By the algorithm the maximum clique size is
equal to the minimum coloration size.
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3. Algorithms for minimum covering by cliques and maximum independent set.
Let us define inductively a sequence of vertices nl, n2, .", nt in the following way"
n n; nk is the highest vertex smaller than nk-1 and which is not in
J,l [-j J,2 U [-j J,k-, all vertices smaller than nt are in J,, [_J [_J J,t. Hence
{nl, n2, "", nt} [_J J,, [.J J,2 [_J [.J J,t is the set of all vertices of G.

The set {nl, n2, "", n} is clearly an independent set, and hence a minimum
covering by cliques must have at least sets. On the other hand, for every i, 1 __< =< t,
S,,, J,,, 1.3 {hi} is a clique and also (S,,,..., S,) is a covering by cliques of G.
Therefore, this is a minimum covering by cliques and {n l, "’, nt} is a maximum
independent set of G. By the algorithm, the size of the maximum independent set
is equal to the size o" the minimum covering by cliques. In the example of Fig. 3,
we have" nl 8; n2 7; n3 5. Therefore, {8, 7, 6} is a maximum independent
set, and ({ 1, 3, 4, 8}, {2, 4, 6, 7}, {2, 3, 4, 5})is a minimum covering by cliques. For
finding the highest vertex smaller than n_ which is not in J,, [J [J J,k_ we
need (n k 1). (k 1) steps. Hence, the maximum number of steps for finding
a minimum covering by cliques and a maximum independent set is

(n-k- 1)(k- 1)--
k=l

t(t- 1)(3n- 2t + 1)

4. Infinite chordal graphs. In a finite graph, the independence number is
defined as the size of the maximum independent set. In the case ofan infinite graph
G, we must define the independence number (G) as the superior limit ofall indepen-
dent set cardinalities. This is because an independent set whose cardinality is equal
to this superior limit may not exist;for example, see the graph in Fig. 5. In this
graph, the vertices are v,J., where i,j go to infinity. For every i, {vi}= is an indepen-
dent set, and if :/: k, then vl is connected to v by an edge. In this graph, (G)
but there is no independent set with cardinality boo. Also, we define fl(G) as the
superior limit of cardinalities of all the cliques.

For any set M, denote its cardinality by IMI. Let V be the set of vertices of G.
For a vertex v s V6, denote the set of all vertices connected to v by Fo and hence
d(v) IFI is the degree of v. Also denote by d(v) the number of vertices to which
v is not connected.

Suppose G is an infinite undirected graph (not necessarily chordal) with
V6[ > supv d(v). Let A be a maximal independent set, not necessarily of maxi-
mum size. Hence [AI <= (G). Because of the maximality of A, every vertex of G is
in A or is connected to a vertex in A. Hence V (LI va Fv) (-J A and therefore

Vl IAl(suplFl + 1) (G)sup (d(v) + 1).
yeA v.VG

But supvv d(v) < Vl, and Vl is an infinite cardinality; hence (G) Vl, On
the other hand, a minimal covering by cliques of G must have at least (G) cliques,
and at most VI. Hence the cardinality of the minimum covering by cliques of G
is Vl.
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Therefore, if G is an infinite graph such that ]VGI > supvvG d(v), then ]VGI is
the cardinality of the minimum covering by cliques and also is the independence
number of G.

By a similar proof we obtain" if G is an infinite graph such that
[VG[ > supvv d(v), then [V[ is the cardinality of the minimum coloring and is
equal to fl(G).

The above remarks give us, in a special case, the critical numbers of an
infinite graph.

Let us now return to the chordal graphs. For infinite graphs the first condition
for an R-orientation is that the graphs have no finite directed circuits. Rose proved
in [3] that a finite graph is chordal if and only if it has an R-orientation. We want
to generalize this theorem by proving that an infinite graph is chordal if and only
if it has an R-orientation.

If G is an infinite R-oriented graph, then every finite vertex subgraph is
R-oriented and hence every circuit vlmv2 v--vl, l> 3, has a chord.
Therefore if G is an infinite R-oriented graph, then G is chordal.

Now we must prove that if G is an infinite chordal graph, then it has an R-
orientation. The proof is by a method of mathematical logic given by Beth which
appears in [5]. The method presumes the existence of the axiom of choice; the
symbols and terms are those of [5].

We construct the following generalized first order theory T with equality.
There are three binary predicate letters" the equality "= ", A (corresponding to
the relation of the graph G) and A2 (corresponding to the R-orientation). Also,
for every vertex v in G, there is an individual constant a,. The axioms of T, in
addition to the equality axioms, are"

1. A (x, x) (x is not connected to itself in the graph).
2. A (x, y) A x(Y, x) (symmetry of the graph).
3. For any two distinct vertices v, u of G, a 4: a,.
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4. If v is connected to u in G, then A l(av, au), and if v is not connected to u in G,
then A x(av, au).

5. A 2(x, y) A l(x, y) (if there is an oriented edge from x to y, then x and y are
connected in the underlying undirected graph).

6. A l(X, y) (A2(x, y) V A2(y, x)) (every edge is oriented).
7. A2(x, y) A2(y, x) (every edge is directed in only one direction).
8. A2(y,x)A A2(z,x) A(y,z)(the condition that A2 represents the R-

orientation).
9. For every finite number n _>_ 3,

:qx1x2...xn(A2(x1,x2) /k A2(x2,x3) /k /k A2(Xn, X1)

(the orientation represented by A2 has no directed circuits).
Any finite set of these axioms involves only a finite number of individual

constants avl, ..., ar. The corresponding subgraph ofG on the vertices {v
is a finite chordal graph and hence it has an R-orientation. Hence, this finite graph
is a model of the given finite set of axioms. Therefore any finite set of axioms of T is
consistent and therefore, by the compactness theorem, T is consistent. It follows
that T has a normal model, that is, a model in which "=" is the identity relation.
This model is an R-oriented graph because of axioms 8, 9, and by axioms 3, 4 it
has G as a vertex subgraph. Therefore G is R-oriented. Thus a graph G (finite or

infinite) is chordal ifand only if it has an R-orientation.
Consider a (finite or infinite) chordal graph G such that the degree of every

vertex of G is finite. G has an R-orientation. Because the degree of every vertex is
finite, it follows that all cliques of G are of the form J 1,3 {v}, where J is the set
of all vertices u such that u v.

Therefore, if G is a (finite or infinite) chordal graph and the degree of every
vertex is finite, then the cardinality of the set of all G cliques is less than or equal to
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FLOW GRAPH REDUCIBILITY*

MATTHEW S. HECHT AND JEFFREY D. ULLMAN"

Abstract. The structure of programs can often be described by a technique called "interval
analysis" on their flow graphs. Here, we characterize the set of flow graphs that can be analyzed in this
way in terms of two very simple transformations on graphs. We then give a necessary and sufficient
condition for analyzability and apply it to "goto-less programs," showing that they all meet the
criterion.

Key words. Code optimization, flow graph, interval analysis, reducibility, goto-less program,
Church-Rosser system.

1. Introduction. The application of many code improvement techniques
depends on globally modeling a program by a directed graph called a "flow graph."
This model provides a comprehensive view of the control flow of a program.
Examples of improvement possible by flow graph analysis are the detection and
removal of useless and redundant statements and the moving of loop independent
computations outside loops. Much of the analysis for this type of improvement
hinges on the property of a flow graph called "reducibility," e.g., 13-[5].

In this paper the "interval" analysis technique of Cocke and Allen [1], [6]
is reviewed and reducibility is defined. Next, we present a new technique for treating
flow graph reducibility, called "collapsibility," and show it equivalent to reduci-
bility. Finally, we give a structural characterization of nonreducible flow graphs
and use this characterization to obtain an interesting result about flow graphs for
"goto-less programs."

2. Necessary concepts from graph theory. In this section we present the
concepts from graph theory which are used in this paper.

DEFINITION. A directed graph G is a pair (N, E), where N is a set and E is a
relation on N. The elements of N are called nodes, and the ordered pairs in E are
called edges.

Let G (N, E) be a graph. A graph G’ (N’, E’) is said to be a subgraph of
G if N’

___
N and E’

___
E f-I (N’ x N’).

Edge (n, m) is said to leave node n and enter node m. We say n is a predecessor
of m, and m is a successor of n. The in-degree of a node is the number of edges
entering and the out-degree is the number of edges leaving.

A sequence of nodes (no, nl, "’, nk), k >= 0, is a path of length k from node no
to node nk if there is an edge which leaves node ni_ and enters node n for 1 <= <__ k.,

A cycle is a path (no, nx, ..., nk) in which no nk. If k 1, then the cycle is a loop.
If (n, n) is an edge, we say node n has a loop.

A graph is rooted ifthere exists at least one node r such that there is a path to all
nodes from r. The node r is called a root of the graph.
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It is often useful to attach certain information to the nodes of a graph. Let
(N, E) be a graph. A node labeling of the graph is a function from N to a set A
of node labels.

A tree Tis a graph G (N, E) with a specified node r in N such that:
(a) node r has in-degree zero;
(b) node r is a root of T;
(c) all other nodes of T have in-degree one.
An ordered tree is a tree with a linear order on the successors of efh node.
We follow the convention of drawing trees with the root on top and having

all edges directed downward. The successors of a node of an ordered tree are
always linearly ordered from left to right in a diagram.

A spanning tree of graph G is a subgraph of G which is a tree and contains all
nodes in the graph.

Aflow graph is a 3-tuple F (N, E, i), where (N, E) is a finite graph and is a
root of (N, E), called the initial node.

Example 1. Figure l(a) shows a flow graph with node 1 as the initial node.
Figure l(b) cannot be a flow graph, since it has no root.

3. Reducibility. A flow graphmay be analyzed by constructs called "intervals."
DEFINITION. Let G be a flow graph and n a node of G. The interval with header n,

denoted I(n), is constructed by the following algorithm.
ALGORITHM A (Cocke and Allen) Interval construction.
Input: Flow graph G and designated node n.
Output: I(n).
Method:
A1. Place n in I(n).
A2. If n’ is a node not yet in I(n), n’ is not the initial node, and all edges entering

n’ leave nodes in I(n), add n’ to I(n).
A3. Repeat step A2 until no more nodes can be added to I(n).
It should be observed that although n’ in step A2 may not be well-determined,

I(n) does not depend on the order in which candidates for n’ are chosen. A candidate
at one iteration ofA2 will, if it is not chosen, still be a candidate at the next iteration.

/

(a
FG. 1. Examples of graphs
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The next algorithm partitions a flow graph uniquely into disjoint intervals.
ALGORITHM B (Cocke and Allen) Partition of a flow graph into intervals.
Input: A flow graph G (N, E, i).
Output: A set of disjoint intervals I1, "’", Ik, whose union is N.
Method:
B1. Establish a list H of header nodes and a list L of intervals. Initially, H

consists only of i, and L is empty.
B2. If H is empty, halt; L is the desired list of intervals.
B3. Otherwise, choose n on H, and compute I(n) by Algorithm A.
B4. Add I(n) to L. Delete n from H, but add to H any node which has a

predecessor in I(n), but which is not already in H or in one of the intervals
on L. Return to B2.

Example 2. Let us consider the flow graph of Fig. l(a). We begin with node 1,
the initial node, on list H. Algorithm A tells us to add node 2 to I(1), then to add
nodes 3 and 4. No further nodes can be added to I(1). For example, node 5 has an
edge entering from 6, which is not currently in I(1), and 6 has an edge entering
from 5.

We therefore place I(1) {1, 2, 3, 4} on L, and add 5 and 6 to H. Then, we
compute 1(5) {5, 7} and I(6) {6, 8}. Note that 1 is not added to I(6), because it
is the initial node.

Two important properties of intervals [1], [3], [4] are:
(i) every cycle within the interval includes the interval header; and
(ii) every edge entering a node ofthe interval from the outside enters the header.
Evidently, the intervals of one flow graph can be considered the nodes of

another flow graph in which there is an edge between intervals I1 and I2 if and only
if I1 I2, and there is an edge from a node in 11 to the header of I2. Furthermore,
this process may be performed repeatedly.

DEFINITION. Let G be a flow graph. Then I(G), the derived graph of G, is de-
fined as follows:

(a) The nodes of I(G) are the intervals of G.
(b) There is an edge from the node representing interval 11 to that representing

I2 if there is any edge from a node in I1 to the header of I2, and I1 I2.
(c) The initial node of I(G) is the interval containing the initial node of G.
Flow graph G is called irreducible if and only if I(G)= G. The sequence

G Go, G1, G2, "", Gn is called the derived sequence for G if Gi+ I(Gi), and
G is irreducible. Gn is called the limit flow graph of G and is denoted by ](G).

Flow graph G is called reducible if and only if ](G) is a single node with no
loop. Otherwise, it is called nonreducible.

Example 3. Let GO be the graph of Fig. l(a). Then G1 I(Go) has three nodes,
corresponding to the three intervals 1, 2, 3, 4}, {5, 7} and {6, 8} of Go. Let these
nodes be n rt2 and n3, respectively. Then G is shown in Fig. 2. There is an edge
from r/ to n2, for example, because of the edge in Go from node 3 to node 5.

4. Collapsibility. We shall define a pair of simple transformations that
together have the same effect on flow graphs as the interval construction does.
Moreover, it will be apparent that the data flow analysis suggested in Ill, [3], [4],
[6], using the interval construction, could be equally well done if construction of
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FIG. 2. Derivedflow graph

the derived sequence of a graph G were replaced by repeated application of our
transformations.

There are various advantages to the approach taken here, compared with the
interval analysis approach. For example, [7] gives an O(n log n) algorithm to
determine whether a flow graph is reducible. In comparison, the straightforward
technique of constructing the derived sequence can take O(n2) steps if performed
in the obvious way. Consider, for example, the flow graph of n nodes of Fig. 3.
Also, [8] gives an algorithm taking O(n log n) bit vector operations to find common
subexpressions in a reducible graph. In comparison, the techniques of [1], 4] can
require O(n2) bit vector operations. (Fig. 3 again suffices.)

Moreover, these transformations seem to characterize the set of reducible
flow graphs in a nice way, and they lead to a further characterization of reducibility
that makes it clear in many cases that the control flow structure of a given pro-
gramming language will yield only reducible flow graphs. For example, the
D-charts developed from "goto-less programs" 16] are all reducible. We now give
the definitions of the two transformations.

DEFINITION. Let G be a flow graph. Suppose n is a node in G with a loop, that
is, an edge from n to itself. Transformation T on node n is removal of this loop.

FIG. 3. Flow graph requiring O(n2) steps for interval analysis
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Let nl and/’/2 be nodes in G such that nl is the unique predecessor of n2, and
n2 is not the initial node. The transformation T2 on node pair (nl, n2) is merging
nodes nl and n2 to one node, which we may call nl/n2, and deleting the unique
edge between them. Let n - n and n - n2. There is an edge from node n to nl/n2
if there was previously an edge from n to nl (there cannot be one from n to n2), and
there is an edge from nl/n2 to n if there was previously one to n from either nl or
n2 or both. nl/n2 has a loop if there was an edge from n2 to n

Example 4. Figure 4 shows a flow graph which is transformed into a single
node by one application of T and two of T2. Although T2 is not applicable to the
original graph, it becomes applicable after use of T

Various authors have considered similar transformations, but from the point
of view of generating graphs rather than analyzing (i.e., reducing) them. Cooper
[9] considers three generating rules, one of which is the inverse of T (i.e., addition
of loops). The other two together are equivalent to the inverse of T2 It is shown in
[9] that together with a construction which is the inverse of "node splitting" [10],
these generating rules are capable of building an arbitrary flow graph.

Engeler [11], [12] considers "normal form flow charts," which are built by
two generating rules, one of the inverse of T and the other equivalent to the inverse
of T2, restricted so that the two nodes involved have disjoint sets of successors.
Thus, the normal form flow charts are a subset of the reducible graphs. They are
characterized as trees with additional back edges.

We now proceed to develop useful properties of the transformations T and

DEFINITION. A flow graph is called collapsible if and only if it can be trans-
formed into a single node with no loop by repeated application of T and T2.
Otherwise, it is called noncollapsible.

Example 5. The flow graph of Fig. 2 is noncollapsible. There are no loops,
and no node but the initial node has a unique entering edge, so neither T1 nor T2
is applicable. On the other hand, the flow graph of Fig. 4 is collapsible.

T1 and T2 have a useful property; they form a "finite Church-Rosser"
transformation [13].

DEFINITION. Let R be a relation on a set S. Let xRy denote (x, y)e R. The
inverse of R, R- 1, is {(y, x)l(x, y) R}. R is symmetric if R R- 1. R is reflexive if
(x, x) e R for all x e S. R is transitive if xRy and yRz imply xRz for all x, y, z in S.

TI T2 T2

FIG. 4. Applications of T and T
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If R1 and R2 are relations on S, then the composition of R and R2, denoted
RxR2, is {(x, z)[ for some y in S, xRy and yRzz} The reflexive closure of R, denoted
R #, is R U {(x, x)[x S}. The transitive closure of R, denoted R +, is R J R2

U R3 ..., where R R and Ri= RRi- for >= 2. The reflexive transitive
closure of R, denoted R* is R# U R +. The completion of R, denoted /, is
{(x, y)[xR*y and there is no z such that yRz}.

A pair (S, ), where S is a set and is a relation on S, is said to be finite if
for each p in S, there is a constant kp such that if p= q, then <_ kp. That is,
there is a bound on the number of times can be applied in succession, beginning
with any element p. We say (S, ) is finite Church-Rosser (FCR) if it is finite, and
=g is a function, i.e., p =g q and p =g r implies q r. If set S is understood, is
called an FCR transformation.

The following theorem gives a test for the FCR property which is simpler to
apply than the definition. It is proved in [13].

THEOREM 1. Let be a relation on set S. Then (S, ) is FCR if and only if it is

finite, and for all p in S, if p p and p P2, then there is some q such that

P qandp2q.
DEFINITION. Let S be the set of flow graphs. We define the relation , 1

or 2, by G . G’ if and only if G can be transformed into G’ by an application of T.
Let denote the union of and .. The reflexive closure, k-fold product,
transitive closure, reflexive transitive closure, and the completion of = are

# k +
respectively given by , , , and =.

THEOREM 2. (S, ) is FCR.
Proof We use Theorem 1 and note that in this case, we shall always be able to

# #
find q such that px q and P2 = q.

Finiteness property. Let G be a flow graph with n nodes. Each application of
T or T2 deletes at least one edge. Thus, is finite.

Commutativity property. Suppose G . Gx and G G2, where i,j {1, 2}.
There are three distinct cases to consider.

Case 1. j 1. Suppose T is applied to node n to yield G and to node n2

to yield G2. If nl n2, then G G2. If n 4: n2, then T may be performe on
n2 in G and on n in G2 to yield equal graphs.

Thus, G G H and G G2 #= H, where H is the graph resulting after
applying T1 to nodes n and n2 in G.

Case 2. j 2. Suppose T2 is applied to node pair (n, n2) in G to yield G,
and to node pair (n3, n4) in G to yield G2. If n n3 and n2 n4, then G1 G2.

If all four nodes are distinct, then apply T2 to (n3, n4) in G, and apply T2 to (nl, n2)
in G2 to yield equal graphs. Now suppose neither of the previous subcases holds.
If n n3 and no other equalities hold, then Fig. 5 shows the subgraph of interest.
Otherwise, if n2 n3 and no other equalities hold, then Fig. 6 shows the subgraph
of interest. Thus, G G H and G G2 = H, where H is the graph resulting
after applying T2 to (nl, n2) and to (n3, n4) in G.

We place the symbols , #, *, + and above the relation symbol instead of at the upper right
corner, as indicated for relation R in the above definition.
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n’/n:/n4 3

FIG. 5. Applications of T

The case in which nl n4 and no other equalities hold is symmetric to the
case n2 n3 above. The case nl r/4 and n2 n3 is impossible, because then the
flow graph has two isolated nodes, and hence must consist of only nl and rt2 But
one of these must be the initial node, and T2 is thus either not applicable to (nl, n2)
or not applicable to (n3, r/4). Since we have assumed nl ?/2 and rt 3 r/4, and n2
may not be n unless n n3, we have considered all possibilities.

Case 3. j. Suppose T2 is applied to node pair (nl, rt2) in G to yield G1, and
T is applied to node n3 in G to yield G2. Clearly, r/2 rt 3. Consequently, T and
T2 do not "interfere"; T1 may be applied to node n3 in G1, and T2 may be applied
to node pair (nl, rt2) in G2 to yield equal graphs. Thus, G =:, G1 H and G G2

= H, where H is the result of applying T2 to (nl, r/z) and T to n3.

5. Equivalence of reducibility and collapsibility. Theorems 3 and 4 establish
that a flow graph is reducible if and only if it is collapsible.

DEVIr<TION. Let the first n nodes added to an interval I(h) in Algorithm A be
called a partial interval. We assume, of course, that the interval I(h) has at least n
nodes, and n >= 1.

LEMMA 1. Let G be a flow graph. Then G I(G).
Proof It suffices to show that a partial interval is collapsible to its header,

and that connections (edges) between a partial interval and the other nodes in the
flow graph are maintained. Thus, constructing the derived graph I(G) of flow
graph G corresponds exactly to collapsing the intervals of G.

Inductive hypothesis. A partial interval of n nodes is collapsible to its header,
and edges between the partial interval and the other nodes of the flow graph are
preserved. That is, edges leaving the partial interval to another node outside the
partial interval remain. The header will have no loops.

FIG. 6. Applications of T
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Basis. The first node added to an interval is the header node. The only col-
lapsing possible is removal of a loop if present. This possible application of T will
not destroy any edge to another node in the graph outside the partial interval.

Inductive step. Assume that the inductive hypothesis is true for a partial
interval of n nodes, and consider the addition of another node m to the partial
interval. This new node only has edges entering it from nodes in the partial interval.
Since the first n nodes of the partial interval are collapsible by the induction
hypothesis, there will be exactly one edge from the collapsed partial interval to m.
Thus, T2 is applicable. Edges from m to nodes outside the partial interval now leave
the node representing the collapsed partial interval. If there is a loop introduced by
the application of T2 it can be removed by T1.

As an immediate consequence of Lemma 1, we have the following.
THeOReM 3. If a flow graph is reducible, then it is collapsible.

Proof If ](G) 0, then G = 0 by Lemma 1, iterated.
The converse of Theorem 3 is easy to prove.
THFOREM 4. If a flow graph is collapsible, then it is reducible.

Proof Suppose G =g 0, and let ](G) G’. By Lemma 1 iterated, G G’. We
must have G’ =; 0. (For if G’ =g G", then G =; G". Since is a function, and
G =; 0, we have G" 0.)

If G’ - 0, then since G’ =; 0, Ta or T2 is applicable to G’. We have assumed
I(G’) G’, so every node appears on the header list when Algorithm B is applied
to G’. If T is applicable to node n, then I(n) does not have a loop in I(G’), so
I(G’) 4: G’. If T2 is applicable to node pair (ha, n2), then n2 is in I(n), so again,
I(G’) 4= I(G). We conclude that G’ 0.

6. Characterization theorem for nonreducible flow graphs. We shall now show
the existence of a certain subgraph in all and only the nonreducible flow graphs.
Prior to showing this result, we present the concept of a "depth-first spanning
tree" of a flow graph.

DEFINITION. A depth-first spanning tree (DFST) of a flow graph G is a spanning
tree that is constructed by Algorithm C.

Algorithm C. DFST of a flow graph.
Input: Flow graph G.
Output:DFST of G.
Method:
C1. The root of the DFST is the initial node of G. Let this node be the node n

"under consideration."
C2. Perform step C3 until it is no longer applicable. Then perform C4 and C5.
C3. If the node n under consideration has a successor x not already on the

DFST, we select node x as the right-most successor of n found so far in
the spanning tree. If this step is successful, node x becomes the node n
under consideration.

C4. If the node under consideration is the root, then halt.
C5. Otherwise, back up the DFST one node toward the root and consider

this node by going to step C2.

Let 0 represent the graph with one node and no edges.
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DEFINITION. We define the spine of a DFST T to be the sequence of nodes
(r/l, t/z, r/k) such that nl is the root of T, ni+ is the right-most successor of
ni, =< __< k 1, and nk has no successors.

We can add to the DFST T of a flow graph G the edges of G which are not
edges of T. Conventionally, we show edges of T as solid lines and edges of G not in
T by dashed lines. An important property of DFST’s is the following.

LEMMA 2 [14]. Let G (N, E, i) be a flow graph and T (N, E’) one of its
DFST’s. If there is an edge (nl, n2) in E E’, then either"

(i) there is a path from n to rl 2 in T;
(ii) there is a path from n2 to n in T;
(iii) nx n2; or
(iv) n is to the right of n2 in T. 3

Example 6. Let G be the flow graph of Fig. 7(a). If we consider nodes in the
order 1, 2, 3, 4, then back to 3, then to 5, we obtain the DFST of Fig. 7(b). The
spine is 1, 2, 3, 5.

DEFINITION. Let (*) denote any of the graphs represented in Fig. 8, where the
wiggly lines denote node disjoint (except for the endpoints, of course) paths;
a, b, c and i, the initial node, are distinct, except that a and may be the same.

LEMMA 3. The absence of subgraph (*) in a flow graph is preserved by T and T2
Proof Let G be a flow graph and let n and n2 be any two nodes in G. We

observe that if a path does not exist between nl and n2, then neither T nor T2 will
create such a path;neither will they make two paths be node disjoint if.they were
not so already.

THEOREM 5. If a flow graph is nonreducible, then it has a subgraph ofform (*).
Proof We prove the theorem by induction on n, the number of nodes of G.
Inductive hypothesis. Flow graph G with n nodes has a subgraph of form (*).

(a) (b)

FIG. 7. Example of Algorithm C

The notion of "to the right" has only been defined for nodes with the same predecessor. We can
extend it naturally by saying that if n is to the right of m, then all n’s successors are to the right of all
of m’s successors.
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FIG. 8. The graph (*)

Basis. n 3. This is an elementary consideration of the three cases in Fig. 9
with the initial nodes at the top.

Inductive step. n > 3. Assume that the inductive hypothesis is true, and
consider a nonreducible flow graph G with n nodes. By Lemma 3, we may assume
without loss of generality that T is not applicable to G. That is, if G can become
G’ under repeated application of T1, and we can show that G’ has (,), then we will
also have shown that G has (*). By the inductive hypothesis and Lemma 3, it
follows that Te is not applicable to G. Thus, we may assume that G is irreducible.
Let T be a DFST for G, and let the spine of T be (n, ne, ..., nk).

We claim that k 3. The initial node n is on the spine. Now consider the
right-most successor of the root, namely n.. Surely ne exists, since n > 1. Node ne
must have at least two entering edges in G, since G is irreducible (else Te would be
applicable). By Lemma 2, other entering edges must come from nodes having a
path from ?/2 in the tree. Thus, n2 must have at least one successor, n3

Now find the highest number d, such that na has an edge (in G but not T) to
some n n on the spine, with < d. na always exists because, in particular, ne
has such an edge entering. Let b be the largest number in the range 1 < b < d,
such that there is an edge from na to n in G.

Find (if possible) the first node na on the spine starting from the root with a
forward edge (in G but not in T) entering a node n, such that n is below n on the
spine and equal to or below nn. Figure 10 depicts this situation. Notice that nodes
n,, n, and n correspond to nodes a, b, and c in (*), and n corresponds to i.

Suppose that there is no such edge (n,, n) in G. Let us consider the subgraph
H of G consisting of the nodes on the spine from n to nn, together with their
connecting edges in G. There are no edges of G entering a node in H from above
other than n by assumption, and there are no edges of G entering a node in H
below na on the spine since (na, n) is the "lowest" backward edge. Furthermore,

FIG. 9. 3-Node irreducibleflow graphs
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FIG. 10. Paths in spanning tree

by Lemma 2 no other edges enter nodes in H. Thus, any reduction by T or T2
taking place in H, with nb treated as the initial node, will also be a valid reduction
in G. Since G is irreducible, we conclude that H is likewise irreducible. Finally,
since b > 1, the induction hypothesis applies to H. This ends the induction.

But, since H has a subgraph of form (,) with initial node nb, it is easy to show
that G has a subgraph (,) with initial node nl by adding the path from n to nb.

COROLLARY. IfG is irreducible, then it has a subgraph (*) in which the path from
a to c is a single edge.

Theorem 5 is stronger than a previously known result [4], [15], which states
that every nonreducible graph has a double entry cycle. For example, Fig. 11
shows a graph which has a double entry cycle, but which is a "D-chart." In the
next section we use Theorem 5 to prove that all D-charts are reducible.

THEOREM 6. If a flow graph G has a subgraph (*), then G is nonreducible.
Proof. We proceed by induction on the number of nodes, n, in G. The basis is

again trivial. For the induction, suppose that G of n > 3 nodes is reducible, but has a
subgraph (*). Let G’ be the graph formed by applying Tx to G until no longer
possible. It is easy to see that G’ also contains (*), and by Theorem 2 is reducible.
Therefore T2 is applicable to some node pair (n, n2) of G’. Let n2 be the successor
of n, and let G" be the result of applying T2 to G’. We consider cases, depending on
the relation of n2 to (*).

Case 1. n2 is not one ofthe nodes represented by (*), including the paths shown.
It is straightforward in this case to show that (*) is present in G".

Case 2. n2 is a of (*). Then nl must be the predecessor of a on the path from
to a. Again, (*)exists in G".

Case 3. n2 is b or c. Since b and c each have at least two distinct predecessors,
this case is impossible.
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()

FIG. 11. Reducible flow graph with double entry cycle

Case 4. n2 is a node on one of the paths of (*). Then n is on the same path
(possibly an endpoint). (*)clearly exists in G".

Since G" has one fewer node than G, the inductive hypothesis applies to G".
Therefore G" is nonreducible. But by Theorem 2, since G G", and G 0, it

follows that G" =; 0, i.e., G" is reducible. We have a contradiction, and conclude
that G is nonreducible.

7. Applications of the characterization theorem. D-charts [16]--[19] or "block
form programs" [20] are a restricted class of flow charts which can be imple-
mented by a programming language having no explicit "goto" statements. They
are as powerful as general flow charts provided additional variables called "flags"
are introduced to represent a history of control flow [17].

We define D-charts by informal "graph grammars." (See [21], for example.)
The graph grammars we use are similar to the grammars for formal languages,
except that the production rules indicate the replacement of nodes in a labeled
graph by subgraphs. For example, Fig. 12 presents a simple definition of D-charts.
The start symbol is (block). Rule (3) in Fig. 12 shows that a (block) may be
replaced by an "iteration" structure, (while-do), and rule (2) enables possible
replacement of a (block) by an "if-then-else" structure.

DEFINITION. A D-chart is a flow graph which can be produced by the following
rules.

1. Begin with a single node, the initial node, labeled (block).
2. Replace, at will, a node n, labeled (block), by one of the structures on the

right of the ---, in Fig. 12. Edges entering n now enter the highest node in each of
the replacement structures. Edges leaving n now leave the lowest node in structures
1, 2 and 4 and the higher node in structure 3.

3. If the node replaced is the initial node, the highest replacing node becomes
initial.

4. Terminate the generation process if there are no nodes labeled (block).
Otherwise return to step 2.
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(1) <block

(2) <block>

(3) <block>

<block>

<block>

block block>

(4) <block> O

FIG. 12. Graph grammar for D-charts

Example 7. The sequence of graphs shown in Fig. 13 illustrate the generation
of a D-chart. Figs. 13(b), (c) and (d) are produced by rules 2, 1 and 3, respectively.
Figure 13(e), the D-chart, is produced by three applications of rule 4.

THEOREM 7. Every D-chart is reducible.
Proof We shall use Theorem 5 and show that (*) cannot appear in a D-chart.

If (,) does appear, then node a, which has at least two direct descendants, must be
created as the highest node in one of the replacement structures of rules (2) and (3)
in Fig. 12. These possibilities are shown in Figs. 14(a) and (b) respectively.

In Fig. 14(a), regions R and R2 are the sets of nodes generated by the two
nodes labeled (block) in Fig. 12 (2). Since paths in (,) are node disjoint, nodes b

<block>

(a)

<blo
block bl!

(c)

<block> <block>

(b)

<blok>
blck

(el

FIG. 13. Generation of a D-chart
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(a) (b)
FIG. 14. Portions of a D-chart

and c must be found in R and R2, respectively. But it is elementary that there can
be no paths from R to R2 that do not pass through a. Thus, no (*) exists in this
case.

In Fig. 14(b), region R, represents the nodes generated by the node (block)
in Fig. 12 (3), and R3 represents the nodes accessible from a without entering R,.
We note that any node labeled (block) in the generation scheme for D-charts
has out-degree at most one. Thus, b and c of (*) must appear in R3 and R,, re-
spectively. Again, we observe that a path from b to c must pass through a, and we
conclude the theorem.

Another simple example of the application of Theorem 5 is the following.
THEOREM 8. The flow graphs of those FORTRAN programs whose transfers to

previous statements are all caused by the normal termination of DO loops are
reducible.

Proof. If the flow graph for such a program had subgraph (,), then the loop
between nodes b and c would be part of a DO loop, and the paths from a to b and
c could not be part of that DO loop. Since DO loops may be entered at only one
point, we would conclude that b and c are the same node. Thus, (*) does not appear
in such a flow graph.

8. Conclusions. We have demonstrated that interval analysis is a special case
of a more general reduction technique. This technique, the application of two
transformations"

T1 removal of loops,
T2 merging of a node with a unique predecessor with that predecessor,

can be used for data flow analysis exactly as interval analysis is used.
We then showed that all and only the nonreducible flow graphs have a

subgraph (*)consisting of at least three nodes, a, b and c, with node disjoint paths
from the initial node to a, from a to b and c and from b to c and back. (a may be
the initial node.) We used this result to prove that certain kinds of programs have
reducible flow graphs.
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EXPECTATIONS OF FUNCTIONS OF
SEQUENCES OVER FINITE ALPHABETS WITH GIVEN

TRANSITION PROBABILITIES BY
METHODS INDEPENDENT OF SEQUENCE LENGTH*

D. M. JACKSON

Abstract. A special case of the problem discussed in this paper occurs in connection with non-
parametric classification and is introduced from this point of view. The special case concerns the
computation of expectations of statistical functions of the "distance" between pairs of fixed-length
sequences over a binary alphabet with given a priori state transition probabilities. The general problem
involves an extension to alphabets of arbitrary order and the comparison of an arbitrary number of
fixed-length sequences. Given a set of sequences, it is shown that for a large class of functions exact
computation may be carried out by an algorithm whose computation time is independent of the
length of the sequences. It is further shown that results for all functions of this class may be derived
from a small number of basis functions. Two methods for computing basis functions are given. Basis
functions for the commonly encountered special case involving pairs of binary sequences are given
explicitly.

Key words and phrases. Nonparametric classification, generating functions, algorithms, com-
binatorial functions.

1. Introduction. The work presented here was motivated by a problem in
nonparametric classification theory. Accordingly, a brief description of the
problem is now given.

Nonparametric classification theory deals with the construction of classifica-
tions of populations of objects when the underlying statistical distribution is the
unknown "parameter." The objective of classification in this case is to derive
a decomposition of the data into classes which will reveal the structure of the
population, and to generate predictions and hypotheses about the population
which may be verified independently. Methods of factor analysis, linear and
nonlinear discrimination and cluster analysis of various types are instances of
nonparametric techniques (Good [1], Friedman and Rubin [2], Zadeh [3],
Cover and Hart 4], Haralick [5], Dempster [6], inter al.). The methods have
been used in a broad range of applications including pattern recognition, in
which recognition and identification are ofprime importance (Nagy [7], Becker [8],
inter al.), taxonomy in which the discovery of phylogenetic relationships in
evolutionary populations is of prime importance (Cormack [9], Jardine and
Sibson [10], inter al.), and information retrieval in which the characterization of
linguistic or semantic relationships is of prime importance (Jackson 11], inter al.).

In a typical situation the objects of the population are characterized by a
set of vectors whose components specify the observed value or state ofan attribute.
The vectors are of fixed length. A classification algorithm develops classes of
objects which are similar to each other while remaining well-differentiated from

Received by the editors March 28, 1972.

" Faculty of Mathematics, Department of Combinatorics and Optimization, University of
Waterloo, Waterloo, Ontario, Canada. This work was supported in part by the National Science
Foundation under Grant GN-27224, and in part by a University of Waterloo Research Grant, and
by a grant from the National Research Council of Canada.

203



204 i. M. JaCSOY

other classes. Similarity may be regarded as a generalized distance function on
the attribute space. The most frequently encountered problems involve binary
attributes and similarity is a distance function for pairs of fixed-length binary
vectors.

Estimates ofthe effect oferrors in the data on the determination of the distance
between pairs of objects is a necessary adjunct to the construction of a classifica-
tion. In cluster analysis, for example, the construction of a putative class may
proceed by accretion. If estimates of the expected error in distance are available,
the assignment of objects to classes can be modified in a way which reduces the
chance of spurious assignment due to faulty data (Jackson and White [12]).
The usefulness of statistical functions (mean, variance, etc.) of the distance between
objects in the presence of errors extends to general nonparametric methods.

In this paper, attention is confined to the case in which the quantities, whose
expectations are to be determined, are expressible as multivariate polynomials,
either directly or by approximation. Ito [13], for example, gives a complete ortho-
normal basis for functions of binary variables and demonstrates its relationship
to finite Walsh functions (Golomb [14]) and Lazarsfeld-Bahadur functions
(Bahadur [15]). In addition, it will be assumed that the random errors are inde-
pendent and have a common distribution. The case of systematic or propagated
errors is not treated. The assumption is valid in a variety of applications, in par-
ticular those in which the attribute values are determined by independent measure-
ments. Ecological classification, information retrieval and taxonomy are examples
of such applications.

The computation of these expectations is made difficult by the combinatorial
nature of the problem. The problem is particularly acute when the number of
attributes is too small to derive sufficiently accurate approximations using the
central limit theorem. In this paper it is shown that, for a reasonably broad class
of distance functions which includes the Hamming distance function, the com-
putation for determining expectations of statistical functions of distance can be
carried out very rapidly. More precisely, if the distance function is representable
as a multivariate polynomial, then the dependence of computation time on the
number of attributes is reduced from polynomial to constant. Moreover, each
expectation is expressible in terms of a small number of basis functions. Since the
latter are multivariate polynomials in the a priori transition probability matrix
and the arguments of the distance functions, the determination for different error
models or for different pairs of objects is reduced to direct polynomial evaluation.
Rational preconditioning (Pan [16]) may be used to speed up the polynomial
evaluation.

Although the binary problem, involving pairs of sequences over a binary
alphabet, is our main concern, the more general problem involving w-tuples of
sequences of length N over an alphabet of order k is treated, since this may be
done without additional complication. The general problem is reminiscent of
the generalized matching problems (Barton [17]) with the additional property
that the kind of an object may be misrecognized. It is anticipated that the general
problem is of use in evaluating the results of classification by nonparametric
methods. More specifically, the admission of the extended alphabet facilitates
the examination of circumstances in which the attributes are not dichotomous.
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The purpose of this paper is twofold first, to determine exactly, in an analytic
form, the expectations of statistical functions of the distance between pairs of
objects when observations on discrete attributes are susceptible to error; second,
to determine, in a form convenient for subsequent numerical computation,
explicit expressions for the expectations of statistical functions for the important
special case concerning pairs of sequences over the binary alphabet (0, 1). Ex-
pressions will be derived for arbitrary state transition probabilities so that
specialization to a particular case, for example, equiprobability of error, is imme-
diate. For reference purposes, the algebraic forms of these basis functions are
given in Appendix B for the commonly encountered special case involving pairs
of fixed-length sequences over the binary alphabet.

Section 2 contains a definition of the general problem, a special case of which
is the comparison of pairs of binary sequences. The computational order of an
algorithm for solving the problem is found to be polynomial in the length of the
sequences. Section 3 shows that the computational order of the process is inde-
pendent of the length of the sequences for a class of distance functions which
includes Hamming distance. In addition, it is shown that a solution of the problem
may be given in terms of the joint moments of the error distribution and that these
may be reduced to multivariate polynomials in the arguments of the distance
function and the a priori state transition probability matrix. Section 4 gives a
number of recurrence relations for reducing the computation time further. A
characterization of the joint moments of arbitrary order is given in terms of the
basis functions, which are shown to be incomplete joint factorial moments
(incomplete in the sense that the terms of the basis functions are among those of
the corresponding joint factorial moments). Section 5 gives an alternative method
for constructing the joint moments. Examples of the application of the two
methods are given in Section 6 and a tabulation of certain basis functions in
Appendix B.

2. Preliminary analysis. Suppose that U is a set of sequences of length N
composed of symbols from a finite alphabet of order k, and that (A 1, A2, "’", Aw)
is an arbitrary w-tuple of sequences from U. The symbols of the alphabet label
the states of the attributes and the sequences are characterizations of the objects.
A -= {ui} is a 2-partition of the set X {xi} of all distinct w-tuples of symbols of
the alphabet. In general A serves as a device for collecting together separate
frequency counts on prescribed configurations of attributes to form, by linear
combination, a set of variables which may be more convenient in specific realiza-
tions of the problem, n is a vector whose ith component gives the number of
symbol positions in which the configuration ui occurs.

f(n) is a given real-valued function (distance function) ofn and q5 is a statistical
function of f. The error matrix gO is an array giving the expectations of q5 for all
w-tuples of sequences when the symbols of the sequences are susceptible to error
independently with a given a priori probability H. The 2 x /l transition probability
matrix P giving the probability of transitions uj ui may be derived straight-
forwardly from H and is column stochastic. Efficient computation of the error
matrix when

(2.1) b(f(m)) e Px
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(the class of multivariate polynomials in/l variables) is the principal concern of
this paper.

For brevity we shall refer to the construction of as the (w, k, N)-problem,
since these quantities characterize the problem. Since the (w, k, N)-problem has 2
variables we shall also refer to it as the 2-variable problem.

In practice, the (2, 2, N)-problem, involving the comparison of pairs of binary
sequences, is the most frequently encountered. The transition probability matrix
for this case is given by

and r+ prob (0 - 1), r_ prob (1 0).
Since pairs of object characterizations are involved,

X (x1,x2,x3,x4) ((0, 0), (0, 1),(1,0),(1,1)).

The independence of f on the order in which objects are compared induces a
partition on X given by:

A (Ul, u2, u3) (Xl,(X2,X3) ,X4) so/]. 3.

The transition probability matrix for the elements of A may be determined
from A and H, and is given by

s+ r_s + r 2_

2r+s+ s_s+ + r_r+ 2r_s

r2+ r + s_ s2

It has been shown (Jackson and White [-18]) that the order of the computation
may be reduced in the (2, 2, N) case with r + r_ provided that each element of
is required only to within prescribed accuracy e. A conservative upper estimate
on the order of computation in this case is NZk, where ks << 2N. Complete re-
computation of , however, is necessary if N, f, 4 or H are altered. In practice,
it is commonly useful to compute for a variety of N and H as part of the classi-
fication procedure. In 3 it is shown that repetition ofthe computations for changes
in these quantities may be considerably reduced for the class of and f which
satisfies (2.1).

To simplify the subsequent analysis, a convention is adopted for abbreviating
power products, products of multinomial coefficients and products of summation
operators. The convention is summarized in Appendix A.

3. Analysis. If q5 and f satisfy (2.1), then @(m) _= qS(f) may be expressed in
the form

(m) aimi.

If and f do not satisfy (2.1), then the values of ai and the admissible values of
are determined by polynomial approximation to q(f).

Since
4*(n)- W(ln),
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then

b*(n) a Bi(n, P).

For independently occurring errors, the probability distribution of tn conditional
on n is given by

(3.1) P(m]n)=[ .P’ (p(1)=n,(1)=m),
| l|_l

P

where I is a 2 2 matrix with nonnegative integer elements giving the number
of transitions uj ui. Thus Bi(n P) are identified as the joint moments of the
distribution P(mln). The high order joint moments are of value if the distance
function is well-approximated by a polynomial.

The computation time for may be crudely bounded above by the time taken
to compute all the matrices I whose elements sum to N. For the 2-variable problem

N
O(Nx2-1) such matrices.

+
there are

22

The following lemma may be used to reduce this estimate.
LENNA 3.1. The probability generatingfunctionfor P(mln) is G(x, n, P) -= (x. p)n.
Proof The proof is direct from (3.1).
The computation time for may be bounded above by the time for computing

the sequences {P(mln)la(m) N} for a(n) N, since a particular 4*(n) is a linear
combination of the elements of one of these sequences. There are Nx- such
sequences. From Lemma 3.1, the sequence {P(m]n)l(m) N} is formed by the
coefficients of x in G(x,n, P). The computation of these coefficients may be
regarded as an interpolatory problem which may be carried out in time O(N-log N) by fast discrete multivariate Fourier transforms (Cochran et al. [19).
Computation time for is therefore bounded above by O(N2"- 2 log N).

Advantage may be taken of the particular form of treated here to carry
out a further reduction. The reduction is carried out in Theorem 3.1 and is stated
in Corollary 3.1. As a preliminary, the following lemma is needed.

LEMMA 3.2. The probability generating function for B(n,P) is G’(x,n,P)
G(e(x), n, P), where e(x) _= (ex, e’, e).
Proof See, for example, Moran [20. The Bi(n,P have been identified as

joint moments.
Remark. Technically, G’(x,n,P) is the probability generating function for

(1/i !)B(n, P).
THEOREM 3.1 (Main theorem). Let Bi(n, P) be the joint moments of the error

distribution given in (3.1). Then

Bi(n p) y’, (n)w).
(,) 0(i)

Proof We shall use the following relationship which results from the column
stochastic property of P"

e(x).P (e(x) I).P + 1.
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Exponentiating both sides, expanding the right-hand side by the binomial theorem
and using Lemma 3.2, we obtain

G’(x, n, P) Z ((e(x) 1). p)m.

Expansion by the multinomial theorem yields

whence, upon rearrangement,

G’(x,n,P)= (n)p(v).PVI(7)1 (e(x)-l)"(v)

P(V) _-<

Using the generating function for Stirling numbers of the second kind, we

may reduce this to

G’(x,n,P) 2 (n),,(v)" pv Z i"
?

p(y) _< >=

The result follows by reversal of the order of summation and by equating coeffi-
cients of x on either side, using Lemma 3.2.

COROLLARY 3.1.
(i) The time taken to compute Bi(n, P)is independent ofN and n.
(ii) The degree of Bi(n, P) as a polynomial in n and P is independent ofN and n.

Proof The proof follows directly from Theorem 3.1.
A convenient tabulation of Stirling numbers and multinomial coefficients

is given by Abramovitz and Stegun [21, Tables 24.2 and 24.4].
Specialization of Theorem 3.1 to the univariate case of a single variable

distributed binomially yields

m, (n)xpXSx)
x--1

which is an expression for the sth moment given by Riordan 22].

4. Methods of expansion. I. A number of relationships between the Bi(n, P)
are now derived to simplify the construction of explicit polynomials for Bi(n, P).
The following definition is needed.

DEFINITION 4.1 (The substitution convention).
(i) The substitution convention (Jackson I23]) (x) is defined by:

(a) (x) x ---, (x)i i.e., (xi)lZ(x) (x)i;
(b) - I(X):(X)i -- Xi.

(ii) The simultaneous application of conventions O(x) and (y) is denoted
by O(z), where z (x, y).
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(iii) The sequential application of conventions (x) and (y) from left to
right is denoted by ((x), (y)).

(iv) The pair of inverses (see Riordan [24]):

(a) x" ,’= S.i)(x), where S. are Stirling numbers of the second kind.
,) where(b) (x). i= s. x, s. are Stirling numbers of the first kind,

are algebraic devices for manipulating expressions into a form suitable
for transformation under one of the conventions or -1.

The following theorem simplifies the form of Bi(n, P) given in Theorem 3.1.
TUEOREM 4.1. Let =_ (- (P. n), (n)). Then Bi(n, P) (P. n)i].
Proof From Theorem 3.1,

Bi(n,P) SIj (n)v).P
ff

=O(i) ,
(y) :j

Thus from Definition 4.1 (i) (a) and the multinomial theorem,

Bi(n, P) SI)(P.n)lz<n) SI)(P" n)l
0(i) 0(i)

whence the result follows by Definition 4.1 (iv) (a).
Certain relationships between the Bi(n, P) now become clear. The results

are incorporated into the next theorem.
THEOREM 4.2 (Permutation theorem). Let c and 7p be row and column suffix

permutations, respectively, on the set of integers (1, 2, ..., 2). Then
(i) B,,(i)(n P) Bi(n :z- l(p));

(ii) Bi(n, P) BiOzo(n), o(P)).
Proof From Theorem 4.1,
(i) B,.(i)(n P) (P. n)’i)l (rc- ’(P). n)’l Bi(n, - ’(P));

(ii) Bi(n, P) (P. n)i[ (p(P). p(n))il Bi(p(n), p(P)).
Theorem 4.2 is of importance in the computation of the Bi(n, P)’s as a set of

multivariate polynomials in n and P. Part (i) of the theorem has two consequences.
First, it gives a rule for deriving B(n, P) from B(n, P) it" is a permutation of i.
Second, it provides a means of generating some of the terms of B(n, P) from others
of its terms. Part (ii) of the theorem also accomplishes the latter. The results arc
incorporated into the next theorem which may be regarded as a description of an
algorithm for determining B(n, P).

DEFINITION 4.2 (Basis functions). A basis function q’(n, P) is a multivariate
polynomial in P and n such that

(i) j(n,P)= [7)] (n)ov).PV, where the summation is over all 7 such

that (7) J, P(7) > P2(7) > > P,(7).
(ii) If 7 and 7’ satisfy the summation conditions, and if (7)= (7’) where

7’ zc(7); or if P(7) P(7’) where 7’ reo(7), then one of the matrices
7, 7’ is eliminated from the summation.
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THEOREM 4.3 (First construction theorem). Let R be the set of all permutations
on the integers (1, 2, ..., 2). Let R(i) be the subset of permutations in R such that
re(i) i, excluding those permutations, except the identity, which exchange zero
elements. If >= 2 ix, then

where (i)

Bi(n. P) * Bf(v(n). vg.(P)).
o’p

rt, e R, =, e R!),

and (ii) * denotes summation of terms n and P which are algebraically distinct.
Proof The proof follows directly from Theorems 3.1 and 4.2.
Remark. If the summation over R() is carried out first, then each term of

Bi(n, P) may be expressed as a product of n’s multiplied by a sum of products of
P’s. Thus some factorization of the terms may be achieved.

If values for P are substituted before those of n, then a reduction in the number
of multiplications needed to compute B(n, P) can be obtained.

THEOREM 4.4 (Extension theorem). If T,(n, P) is a basis function, thenTj(n, P)
is independent of/l if 2 >= a(j).

Proof If 2 > a(j), then a vector of length 2 can accommodate any set of
column sums which sum to a number less than or equal to 2. Addition of a row
and column of zeros to the matrix 7 (see Definition 4.2) does not affect the basis
functions.

An example of the use of Theorem 4.3 is given in 6.
A final observation may be made in connection with Theorem 4.3 to identify

the basis functions. Note (i) of Definition 4.2 suggests that the basis functions
are related to the joint factorial moments of the error distribution. The relationship
is characterized by the following theorem.

THEOREM 4.5 Let Bi)(n, P)= Y’--..=o Ti(n, P), rcpe R and rc, R(i). Then the

B(i)(n, P) are the joint factorial moments of the error distribution.
Proof The proof consists of identifying the generating function for B(i)(n, P)

as the joint factorial moment generating function.
From Definition 4.2, the generating function for B(i)(n, P) is

G"(x, n, P) y’, (n),v)
(y)

Rearrangement of this expression yields

G"(x,n, P) Z
P(7)

which is reduced, by the multinomial theorem, to

G"(x,n, P) Z
n

(x. p)i.

B(n, P) SlJ)Ti(n, P)
0(i)

j ->j2 >="" >-j,
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From Lemma 3.1 and the column stochastic property of P, we have

G"(x,n,P) G(x + l,n,P).

Thus, G"(x, n, P) is the joint factorial moment generating function and the theorem
follows.

For the relationship between moments and factorial moments in the uni-
variate case, see, for example, Moran [20].

5. Methods of expansion. If. Theorem 4.1 may be used to provide an alterna-
tive method for constructing the Bi(n, P). The following definition is needed.

DEFINITION 5.1.
(i) Multiplication with respect to (x) is defined as follows"

Let gl(x) and g2(x) be arbitrary functions. Then gl(x) x e(x)g2(x)
(gl(X)[-x) X g2(x)[-x))[nx).

(ii) Iterated multiplication with respect to (x) is denoted by I-I{).
We shall use x for computing the joint moments from the moments. The

following lemma is required.
LEMMA 5.1. Let U and V be two expressions. Then U x e(x,y)V U x e(y)V

if not both U and V depend on x.

Proof The proof is straightforward.
THEOREM 5.1 (Recurrence relation).

B + i,(n, P) Bi(n P) x Bi,(n P).

Proof From Theorem 4.1,

Bi+ i,(n, P) ((P. n) (P. n)i’)l
((P. n)il<,_,) x (P. n)i’l<,_

since the convention (, -1) has null effect.The result follows immediately.
The following theorem provides a construction for Bi(n,P) based on the

previous theorem.
THEOREM 5.2 (Second construction theorem). Let i(j) denote the vector derived

from as follows"
0 ifk:/:j,

ik(J)
otherwise.

Then (i) Bi(n,P l-I Bi()(n, P);
(n)

ij

(ii) Bij)(n, P) S(ki)((P
k=l

Proof (i) Let x P. n, and suppose that j - k. Then from Theorem 4.1,

Bitj)(n P) x Bitg)(n, P)= x)[ x e-,(,x),e(.)Xk 1
i (from Lemma 5.1 since j k)

Bitj)(n P) x e(.) Bi(k)(n, P).
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The theorem follows by application of this result to the components of and
from Theorem 5.1.

(ii) BO
ij

k=O

ij

Z (ij)v’kl
k "j I(n)"

k=O

(from Definition 4.1 (iv)(a))

The result follows since xj (P. n)j).
It follows from Theorem 5.2 that each B(n, P) may be computed from the set

of polynomials {Bj)(n, P)} k 1, 2, ..-, ij, j 1, 2, ..., 2. These polynomials
are exponentiated multilinear forms. Theorem 4.2 (permutation theorem) shows
that this set may be reduced to {BI)(n,P)}, k 1,2,---, max(il,i2, ..., ia)
by suffix permutation. An example of the use of Theorem 5.2 is given in 6.

6. Examples of the algorithms.
Example 1. Suppose that f(m)= mlml/2 and that (f2ln) is to be computed.

Now (f2ln) B210(n P). The set R of permutations is given by

R {(1,2, 3), (2, 1,3),(3, 1,2),(1,3,2),(2, 3, 1),(3,2, 1)}
{1 2’ 3’ 4, 7175, 6}"

In addition, R’a’) {rt}. From the first construction theorem (Theorem 4.3),

B21o(n,P * (qa21o(p(n), rt(P)) + tI11o(gp(n), rt(P))).

The construction of B2 lO(n, P) involves six matrices. These are tabulated in Table 1
together with the terms in n and P which they generate.

The factorization mentioned in the remark following Theorem 4.3 is observed
in Table 2 and may be carried out by constructing all matrices with the same column
sums, for given row sums. If P is given numerically, then this factorization results
in a reduction of time when the multivariate polynomials are evaluated for a
number of n’s. Table 2 tabulates the action of the operator *.

Thus B2 o(n, P) is equal to the sum of the terms contained in Table 2. Theorem
4.2 allows us to compute B20(n, P), Bz01(n P), Boz(n P), Bo2(n P) and Bo 21(n, P)
from Bzl0(n P) by row suffix permutation.

The tables of Appendix B give the basis functions for the case of the binary
alphabet. It has been shown in 2 that three variables (2 3) are involved in this
problem. Table B.1 gives B’(n, P) in terms of the basis functions, while Table B.2
expresses the basis functions as explicit polynomials in n and P. The form of the
latter matrix, for the binary case, has been given in 2 in terms of the a priori
transition probability between the symbols of the alphabet. Provision of Tables B.1
and B.2 removes the necessity of reconstructing basis functions since they can be
stored as initial data. Expansion of the compact B’(n, P) by row and column
suffix permutations to form Bi(n, P) is a straightforward task.
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TABLE
Tabulation of matrices involved in the construction ofB o(n, P)

Matrix Column

Sum Vector

(3,0,0)

(2,1,0)

(2,1,0)

(1, 1, 1)

(2, o, o)

(1,1,0)

Row Sum

Vector

(2,1,0)

(2,1,0)

(2, l, 0)

(2, 1, o)

(1,1,o)

(1,1,o)

Constant Algebraic Term

(n I)3P: l-P21

(n l)2(n2) P2 P22

(n 1)2(n2)1P P P11

(n1)1(n2)(n3)1P 2P13P21

(n)2PIP21

(n)(n2)P P22

Example 2. We shall now determine B21o(n P) using the second construction
theorem (Theorem 5.2).

From Theorem 5.2, Bzlo(n P) may be decomposed as follows"

B21 o(n, P) B2oo(n, P) (n) Bo O(n, P).

Let x (P. n). Then from Theorem 5.2 (ii),

B2oo(n,P (x21 + x1)lgl(n) since S(12)-- S(22)-- 1,

Bolo(n, P) (x2)](,) since S() 1.

Thus

Bzo(n, P) ((x + x

((Pin + Pxzn2 + P3n3)2

+(Plln + Pzn2 + P13n3))(Pzn + Pzzn2 + Pz3n3)[e(n).



214 D.M. JACKSON

TABLE 2
Evaluation of * (o(o(n), r,(P)) + o(o(n), o(P)))

Permutation’ Contribution of B’(n, P) to Bi(n, P)

7/2

7/3

7/4

7/5

7/6

1. i is applied to the polynomial given by the terms in Table 1.
2. indicates a term which has been removed since it was identical

algebraically to a term already present.

This can be expanded straightforwardly to give the sum of the terms in Table 2.
For example, B21o(n, P) contains the product

(Plln1 + P2n2 q- P3n3)(P2n q- P22n2 -+- P23n3)lt,,)
which may be expanded readily into

(n)2P,P21 -+- (n2)2P,2P22 + (n3)2P,3P23 + (n,),(n2),(P,2P2, + P1,P22)

-+- (n2)1(n3)(P2P23 d- P22P3)+ (n3)1(n,)(P1P23 + P13P2).

It is important to note that the application of 2(n) at the final stage implies that the
variables {xi} may not be allowed to assume numerical values at the start of the
computation, even if P and n are given.

Although the first construction theorem (Theorem 4.3) leads to a more indirect
method for computing Bi(n,P), the abbreviation obtained by expressing the
B’(n, P) in terms of the basis functions i(n, P) is particularly valuable. Moreover,
the expansion of B’(n, P) to the full form B(n, P) involves only suffix permutation
and can be carried out rapidly in a linear scan of the stored forms of the basis
functions.

The second construction theorem (Theorem 5.2) was used to verify that the
results agreed with those already obtained by the previous method.

7. Summary. The polynomials given in Appendix B may be used in an
important special case of the (w, k, N)-problem, namely that of determining the
expectations b* of statistical functions of the distance function f for pairs of
binary sequences of fixed length when the digits are susceptible to error with given
probability. It has been seen that this is a 3-variable problem. Appendix B contains
the basis functions for computing the expectations for all with (i) < 4. Extension
to higher aft) has not been given for the sake of brevity. The probability matrix P
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for the problem is determined straightforwardly from the given a priori state
transition probability matrix. For an arbitrary pair of sequences, it has been
proved as a special case of Theorem 3.1, that the time taken to determine the
expectations of b(f) is independent of the length of the sequences.

Appendix A. The implied product convention. The purpose of the implied
product convention is to simplify expressions involving products of multinomial
coefficients, exponentiated variables and multiple summations. In the subsequent
analysis, vectors and matrices appear in boldface. The elements of all vectors
and matrices, with the exception of those which are probabilistic, are nonnegative
integers. It will be assumed throughout the text that the dimensions of the vectors
and matrices are such that the expressions in which they occur are well-defined.
Under this assumption, explicit discussion of the sizes of vectors and matrices is
largely avoided.

(i) Inequalities. Inequalities between matrices operate elementwise. For
example,

x>yce, xij>yij forl =<i,j<=2, wherexandyare2 x 2.

(ii) Rows and columns of matrices.

(a) (M) {ai(M)} { Mij} row sums of M.

(b) p(M) {&(M)} _= { Mj} column sums of M.

(iii) Implied products.
(a) For matrices"

M H MIni, where M and I are 2 x 2.
i,j

(b) For summation operators"

lpq-- H ,wherel,iandaare2 x 2.
i=a p,q ipq=apq

(c) For multinomial coefficients"

p j=l M

if (M)and jM is the jth row of M.

if p(M)and Mj is the jth column of M,

where
i!

Ul U2 l,l

(d) For Stirling numbers"

SJ) H S(JiJ)
Iij

i,j
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(e) For falling factorials:

(f) For factorials:

(g) For binomial coefficients:

(n)i --: H (Ylj)ij"

i
Yl

m
(iv) Special constants.

(a) 1 denotes the unit vector with 2 components.
(b) 0 denotes the zero vector with 2 components.

0 ifn 0
(c) O(i)=

otherwise.
(d) 0(n) (0(nl) 0(n2), O(nz)).

Throughout the text it will be assumed that summation over a matrix index
is carried out for nonnegative integer values of the elements.

Appendix B. The following tables give the forms of B’(n, P) and Tj(n, P)
for the 3-variable problem for a number of different i. The arguments of these
quantities are suppressed for brevity.

TABLE B.1
Expansion of B’(n, P) in terms of basisfunctions j(n, P)

B’oo- qlOO B’lO- I/110
Boo I/200 -[- kFlOO Bxo kI/210 -[- /110
Boo kI/3oo -- 3tF2oo + kI/loo B2o kF22o -- kF21o -- kI/llO
Boo =W,oo +6tP3oo /TWzoo +Wloo B]’I WI
BlO kI./310 .ql_ 3tI2 + kFllO Bll .ql_ kI./21 ._]._ kI/ll

TABLE B.2
Expansion of the basis functions Wi(n, P) as polynomials in n and P

o0 (nl)lPll
tI2o (n.)zPl + 2(n)(n2)1P1P1
tF3oo (nl)3P311 + 3(nl)2(n2)lPlP12 + 6(nl)l(n3)lPllP12P13
4oo (n)4P’l + 4(n)3(nz)P31P2 + 6(nl)z(nz)zPlPz

+ 12(nl)z(nz)(n3)PPzP13
11o (na)zP11P: + (nl)a(nz)lPiP2:
T21o (n)3PxP2x + (n)z(n:)l(PPz2 + 2PIIPzP21)

+ 2(na)1(nz)1(n3)P12P3Pz
:2o (nl)aPPI + 2(nl)3(nz)PPlP12 + (nl)z(n:)z(4P1PazPzlPz2

+P1Pz2)2 + (nl)z(nz)I(n3)1(4P1P12PzlP:3 + 2PP:zP23)

31o (n),P31P2 + (na)3(nz)I(3PIP:P: + P3IP:I)
+ 3(nl)z(nz)zPIPlzPz2 + (n1)z(n:)(n3)1(6P11P12P3Pz
+ 3P1PzP23)

tp (n)3PIP:P3 + (nl)z(n:)PItP:IP31 + (n1)1(nz)(n3)lP11PzzP33
T:l (n1)4P1Pz1P3a + (n1)3(nz)(PPz1P3: + 2PIPzP:1P31)

+(na):(n:)(n3)(P1Pz:P33 + 2P11PzPzP33 + 2Pl:P13PzIP3)
+(n)z(nz):(PPzzP32 + 2PPI:PzIP3:)
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LOCALITY IN PAGE REFERENCE STRINGS*

G. S. SHEDLER ANI C. TUNG"

Abstract. A probabilistic model is presented of program material in a paging machine. The
sequences of page references in the model are associated with certain sequences of LRU stack distances
and have reference patterns formalizing a notion of "locality" of reference. Values for parameters of
the model can be chosen to make the page-exception characteristics of the generated sequences of
page references consistent with those of actual program traces.

The statistical properties of the execution intervals (times between page-exception) for sequences
of references in the model are derived, and an application of these results is made to a queuing analysis
of a simple multiprogrammed paging system. Some numerical results pertaining to the program
model and the queuing analysis are given.

1. Introduction. Although several authors (see Lewis and Shedler Ill, Gaver
and Shedler 21, [3], and others) have recognized that characteristics of multi-
programmed paging systems may be obtained by analysis of cyclic-queues, little
attention has been paid to the matter of obtaining an appropriate representation
of the program load in such studies. Almost invariably it has been the case in the
queuing analyses to which we refer that the aspect of program behavior that is
required is a characterization of the times to page fault, or execution intervals,
and that for reasons of mathematical necessity, execution intervals for the entire

multiprogrammed load have been taken to be independent, identically (often
exponentially) distributed random variables. Although in some cases it can be
argued that such a representation is adequate in terms of the response variables
in the queuing model that were studied, it appears that a less gross representation
of program behavior would be preferable. This paper is an attempt to formulate
a representation of the page reference sequences of individual programs, in such
a way as to make explicit the memory-size dependence of the program’s page-
exception characteristics and to formalize the notion of locality of reference.

Most of the previous attempts to model program behavior known to the
authors (e.g., Denning, Chen and Shedler [4], Aho, Denning and Ullman [5])
have been primarily addressed to questions of optimality of the replacement
algorithm for a single sequence of references rather than to questions of per-
formance in a multiprogramming environment. The exception to this is the study
of memory contention in a paging machine of Oden and Shedler [6], in which a
model of program behavior in the spirit of this paper is presented. Both the
Oden-Shedler model and the model presented in this paper draw on the ideas of
stack algorithms and stack distances defined and studied by Mattson, Gecsei,
Slutz and Traiger [7].

In 2 we give a description of the model of program behavior that we propose
along with some discussion of locality of reference. We then derive in 3 the
structural properties of sequences of execution intervals in the model. In 4 some
matters are discussed concerning the choice of values for parameters in the model.

Received by the editors November 2, 1971, and in final revised form May 31, 1972.
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The next section contains an application of the program behavior model to a
queuing analysis of a simple multiprogrammed paging machine. Some numerical
results are given in the final section.

2. Definition of the program behavior model. The program model which we
propose is based on the notion of LRU "stack distance," as defined in [-7].
There is defined in [7] a class of replacement algorithms called "stack algorithms,"
which have the following property’Given a replacement algorithm in the class,
there corresponds to each reference that a program makes during the course of
its execution a "stack," which is a list of the referenced pages of the program.
This stack has the property that the contents of memory just after the reference is
precisely the first b pages in the stack, b being the (fixed) memory capacity. Several
well-known replacement algorithms including LRU are stack algorithms. Given
the stacks, one may speak of the "stack distance" of a reference, which is defined
to be the position that the referenced page occupies in the stack corresponding
to the previous reference. Thus a reference causes a page exception if and only if
its stack distance exceeds the number ofpages of the program in memory. It follows
that a sequence of stack distances (to be referred to as a distance string) provides
sufficient information in itself to determine (as a function of memory size) when
page exceptions occur. For a particular stack algorithm and a reference string
(i.e., the time sequence of referenced pages), the corresponding distance string
is well-defined. Conversely, it can be shown that given an LRU distance string,
the associated referenced string is unique up to naming of the program’s pages.
For a thorough treatment of these ideas, the reader is referred to [7].

The model of program behavior presented here is an attempt to formalize
the notion of "locality" in page-reference strings. By so doing, we hope to provide
a parametrised mechanism for generating "program-like" reference strings,
exhibiting a broad range of program behavior. We anticipate that apart from
analytic studies this will be useful in obtaining a representation of a program load
for detailed (simulation) models of computer systems or subsystems.

An intuitive statement of the "locality" of reference with which we deal might
be the following" During the course of its execution, there is a subset of a program’s
pages that is favored in the sense that pages in the subset are more heavily referenced
than those outside the subset. It is generally the case that both the contents and
the cardinality of this "favored set" change slowly during the course of the execu-
tion of the program.

The model of program behavior adopted here rests upon the definition of a
certain class offinite-state first order Markov chains for the generation ofsequences
of positive integers. The reference strings of the model are defined implicitly by
interpreting the output of such a Markov chain as a sequence of LRU stack
distances.

It is convenient to introduce the Markov chains referred to above by means
of a set of directed graphs, each Markov chain being associated with a unique
graph in the set. For positive integers n and f such that =< f =< n, we define
the (n, f) graph to be a directed graph having n vertices and f2 + 3(n -f)

LRU is the replacement algorithm that chooses for replacement that page (among those currently
in memory) least recently referenced.



220 G. S. SHEDLER AND C. TUNG

directed edges. Denoting the vertices of the graph by {1, 2,..., n), the set of
directed edges in the graph is defined by (i)-(iv), where i j means that there
exists a directed edge from vertex to vertex j.

(i) i-jandji, <= i,j=<f;
(ii) i landl i,f< i__<n;
(iii) ii+ 1,f< i_<_n- 1;
(iv) all the edges in the (n, f)-graph are specified by (i)-(iii).

Note that (i)-(iv) above amount to the assertion of the full graph on the vertex
set {1,2, ..., f},that each vertex ofthe set {f + 1,f + 2, ..., n} is an immediate
successor and predecessor of vertex 1, and that the only other immediate successor
of vertex i {f + 1,f + 2,..., n 1) is + 1. Note also that the exclusion of
additional possible edges in an (n,f)-graph represents an approximation to
reality.

We interpret the (n,f)-graphs as state-transition diagrams for Markov
chains, existence of a directed edge indicating a positive one-step transition
probability, absence of a directed edge indicating a one-step transition probability
equal to zero. When a set of transition probabilities such that the sum of the
probabilities out of any vertex equals unity has been specified, we refer to an
(n,f)-graph as a labeled (n,f) graph, and to the corresponding Markov chain as an
(n, f)-chain. We shall refer to the transition matrix of an (n, f)-chain as the matrix
of the labeled (n, f)-graph. Thus, for example, a labeled (5, 2)-graph is shown in
Fig. 1.

3/4

FIG. 1. A labeled (5, 2)-graph

As indicated above a reference string is the time sequence of page references
of a program. More precisely, suppose that with respect to a particular page
size, a program has n pages named a l, a2, "", an. Then a reference string R of
the program is an infinite string over the alphabet A {al,a2, ..., a,,). We
shall assume an initial LRU stack So to be given and shall consider the (LRU)
distance string D of the program to be an infinite string over the alphabet
{1, 2, ..., n), according to the definition given in 7]. In the model we obtain
reference strings for a program having n pages from an (n, f)-chain by interpreting
the states of the Markov chain as LRU stack distances and constructing the
reference string associated with a generated distance string as follows. Assuming
the initial stack (from "top" to "bottom") to be a,a2,... a and the corres-
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ponding initial state in the chain to be state 1, we shall denote a distance string
that is generable in the chain by D d ldzd3 "", the sequence of LRU stacks
by SoSIS2 ..., and the elements of the ith stack by Si Si(1), S(2),-.., S(n).
Then, by the definition of the stack, the reference string R - rrzr3 associated
with the distance string D, is the sequence of first elements in the stacks, i.e.,

r Si(1), >= 1,

where the sequence of LRU stacks is defined by

SO al,a2,... an,

and for _>_ 0,

Si+

Si(1), Si(2), Si(n Si,

Si(j), Si(1), Si(j 1), Si(j + 1), ..., Si(/’/),

Si(n), Si(1), Si(n 1),

ifdi+ 1,

ifdi+ j,

l<j__<n-1,

ifdi+ n.

It is important to note that although the distance strings D have a first
order Markov structure (by assumption), the reference strings R do not have this
structure. Apart from degenerate cases, the reference strings are not of order k
for any finite k. In fact, there does not appear to be an explicit characterization of
the nature of the dependence in the reference string process. As an example of
the reference string construction, consider the (7, 3)-graph of Fig. 2 and the
distance string illustrated in Fig. 3 in which we take the alphabet of page names
to be {a, b, c, d, e,f, g}.

As just described, reference strings in the model arise from distance strings
generated by the Markov chain of a labeled (n,f)-graph, n being taken as the
number of pages in the program. We now wish to indicate an interpretation of the

FG. 2. The (7, 3)-graph
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LRU

Stacks

{a, b,c} td, b, c} {e, f, g}
b g,abcbccddcbdb ef egggb

12322141233215671233114

aabcbccddcbdbbef ggf egggb
bbabcbbccdcbddbef gf eeeg
cccaaaabbbdcccdbeeegf
dddddddaaaaaaacdbbbbbbbf
eeeeeeeeeeeeeeacdddddddd

acccccccc
ggggggggggggggggaaaaaaaa

FIG. 3. Reference string construction

parameter f and the sense in which reference strings in the model have locality
of reference.

We consider f to be the size of a program’s "favored set" of pages and
consider references corresponding to LRU stack distances 1,2, ..., f to be
references to the favored set. Similarly, we consider references corresponding
to distances greater than f to be references outside the favored set. Thus, given an
initial stack, an initial favored set of pages is defined, i.e., the f top-most pages
in the stack. Then, assuming an initial distance of 1, there will occur a run of
references to the favored set before a reference outside of the favored set occurs.
Note that the edge-defining properties (i)-(iii) of the labeled (n, f)-graph permit a
reference to any page in the favored set to be followed by a reference to any other
page in the favored set.

When, after a random number of references within the favored set, a reference
to a page outside the favored set occurs (distance greater than f), a run ofreferences
of up to n f such pages occur before a run of references to pages in the favored
set (distances less than or equal to f) again occurs. Note that under our interpre-
tation offavored set, each instance ofa distance greater than fduring this transition
period alters the composition of the set of favored pages, and thus the favored set
changes in time. Note also that by the edge-defining properties of the graph,
each run of distances greater than f is immediately preceded by, and immediately
followed by, a distance equal to 1. Thus, the length of the path of distances taken
from distance back to distance through distances greater than f determines
the size of the intersection of two successive favored sets. These ideas are illustrated
in Fig. 3 where the successive favored sets are indicated in braces and the runs of
references in the favored set are delineated by brackets.

Our notion of locality is related qualitatively to the length of runs ofreferences
to the favored set, in that we consider reference strings with relatively long runs
of references to the favored set tO have greater locality of reference than reference
strings in which these runs are relatively short.

With respect to this notion of locality, we adopt the following as a measure
of the locality of the reference strings generated by a labeled (n,f)-graph.

DEFINITION. Let a labeled (n, f)-graph be given, and denote by F the (random)
number of references in a run of references to the favored set. Then the measure

of locality is defined to be E(F), the expected value of the number of references
in a run of references to the favored set.
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By this definition the extent to which a labeled (n,f)-graph gives rise to
reference strings with locality is determined by the matrix P of the distance string
chain.

We close this section with an observation concerning the page-exception
characteristics of reference strings generated in the model. It is clear that the
Markov chain of any labeled (n, f)-graph is irreducible and aperiodic. Therefore,
if P (Pij) is the transition matrix of the chain, there exists a unique probability
vector rt (1, 2, "’", n) satisfying rtP rt such that in a realization D, i is
the long-run fraction of stack distances generated that are equal to i. It follows
therefore that in a memory of size b, the long-run fraction of references in a
realization which are page exceptions will be 7=b+ rci.

3. The semi-Markov process of execution intervals. In this section we derive
the structural properties of the sequence of execution intervals, i.e., times between
page-exceptions, that result when a reference string in the model is processed
under demand paging in a constant number of page-frames, using LRU replace-
ment.

Consider a labeled (n, f)-graph and let P (pij) be the transition matrix of
the associated (n, f)-chain. Thus, for =< i, j =< n,

p,j Pr {dk+l jldk i}, k >= 1.

We shall denote by b (1 __< b < n) the number of page-frames of memory in which
a reference string R rlr2 associated with the (n,f)-chain is processed.
Now consider R and define the sequence of epochs {t}, t > t_ 1, as the epochs
of(discrete) time at which a page exception occurs, given that the reference string R
is processed in b page-frames of memory.

These epochs {t} define the sequence of execution intervals 11, I2, of
the reference string R as follows"

I fir2 rtl

I2 rtx+l

Ik rt+

rt

Thus an execution interval (in memory of size b) is the sequence of references
between successive page exceptions, and is specified by a closed interval of the
form [r,k+l, r,+ 1] or by the degenerate interval [r,].

In the development below it will be useful to keep in mind that since we
assume LRU replacement and that the distance strings D are LRU distance
strings, references rk causes a page exception in memory of size b if and only if
distance dk > b. It follows that we can consider a notion of the "type" of an
execution interval in terms of distances. Thus we make the following definition.

DEFINITION. The execution interval Iris+ 1, r,+ ,] is defined to be of type [i;j]
if d,k+ and d,+, j. The execution interval [r,] is defined to be of type [i] if

d, i.
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Thus, for example, in the case of a labeled (5, 2)-graph with b 2 there are
five types of execution intervals" [1; 3], [1; 4], [1; 5], [4], [5].

We seek a characterization of Zb(t), the process of execution intervals in
memory of size b. It will be convenient to work with the distance string rather
than directly with the reference string. It is easily verified (see, for example,
Fabens [8) that Zb(t is a discrete-time finite-state semi-Markov process (SMP)
if the state of the process at epoch is taken to be the type of execution interval in
progress at epoch t, as defined above. Note that state changes occur at the epochs
{tk} (i.e., whenever a page exception occurs), and the sequence of states of Zb(tk)
is a Markov chain.

We shall denote the number of states in the semi-Markov process Zb(t
by Nb, and by a suitable encoding, identify the states with the integers 1, 2, ..., Nb.

Then, suppressing the dependence on b, we shall denote by qij the transition
probabilities of the imbedded Markov chain, i.e., for 1 <= i, j <= Nb,

qij Pr {Zb(tk)= jlZb(tk_ )= i}.

The length of time Tj spent by the process Zb(t in state before the next
transition, given that the next transition is into state j, is a random variable with
a distribution which we denote by Wj(t), i.e.,

Wj(t) Pr {Tj __< t}.

The mean of this distribution will be denoted by #ij and the unconditional holding
time distribution W(t) in state is defined by

with mean

Nb

W(t) qoWo(t)
j=l

Nb

Pi-- Z qijllij"
j=l

It is important to note that in the SMP of execution intervals, the holding
times Tij are independent ofj, i.e., W/j(t) W/(t). Note also that the matrix Q (qij)
of transition probabilities, and the distributions of the holding times T _-- Tj
can be computed from the elements of the matrix P (Po) of transition probabili-
ties of the underlying Markov-chain which generates the distance string.

By way of illustration we again consider a labeled (5, 2)-graph with b 2.
Then the SMP of execution intervals is a five-state process. Using the encoding,

[1;3]+-+1,

[1 4] --+ 2,

[1; 5] -+ 3,

[4] 4,

[5] 5,
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the form of Q is given by

qll

Q: q31

q12 q13 q14 0

q22 q23 0 q25

q32 q33 0 0

q,2 q43 0

q52 q53 0 0

Note that T4 Ts 1, and that T >= 2 for 1, 2, 3.
Clearly the imbedded chain of the execution interval process is irreducible

and thus has a stationary distribution, i.e., there exists a unique probability vector
a such that tQ .

4. Discussion. It seems likely that, in practice, one would want to specify
the size of a program along with particular page-exception characteristics (i.e.,
fraction of references that are page exceptions as a function of memory size)
and then choose values for the remaining parameters in the model so as to be
able to generate "program-like" reference strings exhibiting a range of program
behavior, but consistent with the specified page-exception characteristics. In
this section we give a result which indicates how this can be done.

Given a value for n, the size of the program in pages, we suppose that a vector
(1, 2, "’", ,) is specified, i being the fraction of distances that are to be

equal to i.
For f it is clear that for any vector with all i > 0 there is an (n, f)-graph

whose matrix P satisfies P (take pj j, for all i, j). For f < n, however,
additional constraints on the -vector are needed to ensure the existence of a
labeled (n, f)-graph whose long-run behavior is consistent with . The following
proposition gives a set of sufficient conditions. A proof of the proposition is given
in the Appendix.

PROPOSITION 1. Let n be a positive integer and let 1 <_ f < n be given. Let
t (fcl 2, "’", ft,) be a probability vector with all positive components such that

(i) 7 > 7j, f + < j __< n,

(ii) 7f +

7 "Jl- - 7f 7

1 f+(iii)
y+) y+)-1

< 2 =< j __< n -f.71 + -- 7f 1
Then there exists a labeled (n, f)-graph with matrix P, such that rP t.

The following corollary is easily established.
COROLLARY 1. Let n be a positive integer and let (1, 2, "’", ,) be a

probability vector such that
(i) > 0, =<j<_ n,

(ii) j > j+ 1, l<j<n-1,_

7r’n-j+(iii) 71 > 1 =< j n 2.
1 qt_ 2r_ n-j ’1
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Then for all f (1 <= f <= n) there exists a labeled (n, f)-graph with matrix P such
that ftP ft.

The following result relates the elements of a matrix of an (n, f)-graph to the
measure of locality defined in 2.

PROPOSITION 2. Let n be a positive integer and let <= f <= n be given. Let
t =(cl,..., c,) be a probability vector for which there exists a matrix P (Pij)
of the (n, f)-graph such that P t. Then

E(F)
(fcl + r2 +"" + cf) + 1.

nf+l -+- 1(P1,f+2 + + Pl,n)

Proof Consider the semi-Markov process of execution intervals for memory
of size f. This process has 2(n f) states corresponding to execution intervals
of type [1,f + 1], [1,f + 2],..., [1, n], If + 2],..-, In]. We shall denote the
states in this order by 1,2, ..., 2(n- f)- 1. Consideration of conditional
expectations reveals that E(F) satisfies the equation

(1)
E(F). (1 + 02 -- + On-f) 1_ 1. (e,_y+ + + e2(,-y)- a)

2f+l --"’"-[- n’
the right-hand side being the (stationary) mean execution interval in memory
of size f, and a (01, ..., 02(,_f)_ 1) being the stationary vector of the imbedded
Markov chain in the semi-Markov process of execution intervals. Denoting the
matrix of this imbedded chain by Q, it follows from the equation aQ that

(2)
lPf + 1,f+ 2 (Xn- f + 1,

zjpf +j,f +j+ 21- Zn-f +j- lPf +j,f +j+ On-f +j, 2<=j<_n-f -1.

In addition we have "the equations

(3)
7f+ --01(7f+ 1_ 7f+ 2

AI- -- n),

f+j (Oj qt_ On_f+j_ 1)(7f + "+" + 7n), 2<=j<=n-f

The 2(n f) equations of (2) and (3) imply

(4)

7f+
1--

Tf+l -31-"’" + :n’
f+j f+j- lPf +j-- 1,f +j

f+l +

On-f +j-
j’+j- lP,f +j- 1,f +

2<_j<_n-f,

2<=j<=n--f.

Substituting the values of i given by (4) into (1) yields

E(F)
(f + -[- -1- n f + lPf + l,f + 2 n- lDn- l,n)
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Finally, note that by virtue of P , we have

lPl,f +j + Cf +j_ ipf +j_ 1,f +j f+j, 2 <= j <= n --f,

and the proposition follows.
We close this section by noting an application of the result of Proposition 2.

The expression for E(F) given in Proposition 2 reveals that, given a vector n
and a matrix P (Pu) such that rtP= n, the measure of locality E(F) is determined
by the sum px,s/ 2 + + Pl,,. In view of this result, given n, an algorithm for
determining the elements of matrices P such that nP= rt for a range of the
measure of locality is derivable directly from the construction given in the proof
of Proposition 1.

5. Queuing analysis of a multiprogrammed paging machine. In this section
we apply the results of 3 to the study of certain aspects of memory management
in a multiprogrammed paging machine. The essential components of the hardware
configuration which we consider are shown in Fig. 4. The main memory contains

Problem
Programs
(B Page-
Frames)

cPu

System

Main Memory
(B’ Page-Frames)

Auxiliary
Storage

Data Transfer
Unit (DTU)

FIG. 4. System configuration

B’ page-frames and there exists auxiliary storage large enough to store all in-
formation needed. We assume that two problem programs are being run in the
system. A part of the main memory is used as the residence of system (control)
programs. Of the remaining B page-frames of main memory, bi page-frames are
allocated to problem program i. Clearly we want

(i) b + b2 B and if ni is the number of pages in program i, the case of
interest is that

(ii) 1 =< b < n for 1, 2.
Under the multiprogramming assumption there is more than one program

resident in the main memory, giving rise to contention for processing resources.
Hence a conceptual queue is formed for processing services to be provided by
the central processor unit (CPU). Whenever a program which is receiving pro-
cessing service from the CPU references a page which is not in main memory
a request for data transfer service is made by the CPU to move the referenced
page from auxiliary storage to main memory so as to be available for processing.
Having initiated this request the CPU is free to render service to the next available
program. Since we have assumed multiprogramming there can be more than one
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request wanting the service of data transfer. Thus a second conceptual queue is
formed for data transfer services to be provided by the data transfer unit (DTU),
which consists of the auxiliary storage and the associated necessary control. As
soon as a referenced page is moved from auxiliary storage to main memory, the
requesting program (logically) is again available for processing. It is assumed
that the CPU can be operated concurrently with the DTU. Thus in multipro-
gramming mode, the CPU can process one program while the DTU is processing
page requests for other programs.

Stage

}_ CPU

Main II bl
Memory ,J
(B Page-’]
Frames) L b2

Stage

FIG. 5. Paging machine queuing model

The model we consider (depicted in Fig. 5) consists of two sequential stages,
each stage acting as a single server. The system serves two programs, each of which
goes through both stages in sequence and then returns to the first stage, this
process being repeated continuously. It is assumed that after completion of CPU
service a program moves instantaneously from stage 1 to the queue in stage 2
and after DTU service at that stage back to the queue in stage 1. For 1, 2 we
suppose that program in the system has a reference string generated by a labeled
(ni, f)-graph.

The analysis that we give is in discrete time (reference time) and is under the
following assumptions

(i) Service times at the DTU are independent of service times at the CPU.
(ii) The successive DTU service times are assumed to be independently and

identically distributed as a random variable T with finite mean hut
otherwise arbitrary distribution specified by fT(k), where

f.(k) Pr {T k}, k >= 1,

such that Y’,k kfr(k) < c. In that which follows we exclude the degenerate
case fr(1) 1, noting that this case can be handled by similar methods.

The question to which we address ourselves is the determination of the CPU
utilization for the multiprogrammed system. The analysis which follows draws
upon the characterization given in 3 of the sequence of execution intervals of a
program in the system as a finite-state semi-Markov process. We shall denote the
number of states in the execution interval SMP of program by Ji and note that
Jg is a function of n, f, and b. Since no confusion will result, we index the states
ofthe two semi-Markov processes by {1, 2, ..., J1} and {1, 2, ..., d2} respectively.
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We shall denote the transition matrices of the execution interval semi-Markov
processes by QI)= (ql})) (1 __< i,j < J1) and Q2)= (ql})) (1 __< i,j <= J2) respec-
tively. We denote the holding times in state j by X1) (1 __< j =< J1) and X2)

(1 =< j =< J2) respectively and denote their mean values by/1) and/2). Finally
we suppose that when observation of the system begins, program is queued for
service at the DTU, program 2 is queued for service at the CPU, and that the
state of each of the semi-Markov processes of execution intervals is 1.

The model is analyzed by concentrating on particular epochs {Zk} as defined
below at which changes in the state of the system occur. The system state changes
at these particular epochs and the successive times between the changes are a semi-
Markov process [8]. This means that the changes in state are generated by a one-
step Markov chain with matrix say R, and the times between changes, given the
initial and terminal states, are independent of the previous history of the process.
The matrix R is derived from the matrices Qtl) and Q(2) olr the execution interval
processes of the individual programs. A subsequence of the {Zk} are regeneration
points in the process and the mean time between these, regeneration points will
also be derived. Finally, CPU utilization, that is, the long-run expected fraction
of time that the CPU is busy, is obtained from these quantities.

Consider the sequence of times {zk}, k 0, 1,2,..., with Zk > Zk-1, at
which either (i) the CPU is idle, a DTU service has just been completed and the
served program has moved to the CPU stage queue, or (ii) the DTU is idle, a
CPU service has just been completed and the served program has moved to the
DTU stage queue.

It is easily seen that the state of the system at the times {Zk} constitutes a
Markov chain C if the state of the system is defined at the times {Zk} by the name
ofthe program at the CPU and the state ofeach of the execution interval processes.

DEFINITION. For i= l, 2 and J 1,2,..., J1, and J2 1, 2,..., J2 the
system is in state (i ;Jl ,J2) at epoch Zk if program is at the CPU, the state of the
execution interval process of program I is jl, and the state of the execution interval
process of program 2 is J2.

The imbedded chain C is a finite chain having r 2J1J2 states. In the sequel
for typographical convenience we shall enumerate the states {i;jl,j2} in lexico-
graphic order. We thus rename the states l, 2, ..., r, according to

(1; 1, 1) 1,

(1; 1,2) -- 2,

(1; 1, J2) - J2,

(1;2, 1) J2 + 1,

(2 J1, Jz) - r 2J iJ2.

The matrix R is of the form

I0 RllR--
R2 0
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where the matrix R has the block form

Dal D12 Dis1
D21 D22 D2j

D 11 Dj2 DJJ
the blocks Dij being J2 x J2 diagonal matrices of the form

q(1)

Oij

and the matrix R2 has the block diagonal form

1tij

Q(2

As an example, suppose that program 1 has a reference string generated
by a (4, 2)-graph and that program 2 has a reference string generated by a (5, 2)-
graph. Suppose further that program 1 executes in 2 page-frames of memory and
program 2 executes in 3 page-frames of memory. Thus n 4, fl 2, b 2,
ng. 5, f2 2, b2 3. Then J1 3 (execution intervals of type [1 3], [1 4], [4])
and J2 3 (execution intervals of type [1;4], [1;5], [5]). Then the matrix Q(1)
is a 3 x 3 matrix of the form

Iql) q q!3)
Q(:) / (1) .(1)q2x t-/22

l( ,,(
[._’ff 31

and the matrix Q(2) is a 3 x 3 matrix of the form

I
Q(2)=/q( q(222

Lq3 q(322

The imbedded chain C has r 1 8 states and the matrix R is of the form given
in Diag. 1, which displays the block structure given above.

Since the imbedded chain of each of the execution interval processes is
irreducible, it follows that the Markov chain C is irreducible, and thus has a
stationary distribution, i.e., there exists a unique probability vector
J2,’’’, fir) such that R .

We now consider the semi-Markov process of times between the epochs
(Zk} and the renewal process consisting of returns to state 1 (i.e., (1;1, 1)). It is
easy to check from the assumptions that the time between an epoch z and
is, given the st, te of the system at these epochs, a random variable whose distribu-
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tion does not depend on the times between previous epochs z, __< k, or the state
of the system at the epochs z, m < k. Thus this transition process is an r-state
semi-Markov process. It is also easy to verify that for all 1, 2,..., r the dis-
tribution of the holding time in state i, given that the next transition is to state j,
is independent ofj. Accordingly we denote the mean holding time in state by 2i
and let k (21,/]’2,’’’, /]’r)" These mean values are given by

(5) 2i= {{max(X}x’)’T)} ifi-(1;jl’J2) frallj2’

{max (x(.2) T)} if/ (2"jl J2) for all jl\J2

Now consider the subsequence {z;,) of the sequence of Markov epochs {zk}
consisting of the zk at which the system enters state 1. These are regeneration
points in the process and the times between them which we call { Y} are inde-
pendent, identically distributed random variables. A standard mean first passage
time calculation in the r-state semi-Markov process yields

1
#i/i.(6) E(Y) 1 i=1

Let us define U(t) to be the total amount of CPU service which occurs in
the system during the time interval (0, t), and note that U(z;,+l)- U(z;,),
k 0, 1,..., is a sequence of independent, identically distributed (positive)
random variables. Moreover, the distributions of these increments between
renewal points are computable from the fact that the increments between Markov
points form a semi-Markov process. The expected value of the total amount of
CPU service between epochs z, and z, + can be found by obtaining the expected
amount of this service time between Markov epochs z and z + 1, given the states
at z and Z+l.

Define random variables X1, X2, -.., Xr by

(7)

(((.1) if (1 j 1, J2) for all J2,

if +-+ (2 ;jl,J2) for all jl.

Then by a first passage decomposition using the equation [IR (cf. [9, pp.
132-133]) it can be shown that

(8)
1

#iE(Xi).E{U(T+I) U(27)} 1i=I
It then follows from (5)-(8) by familiar arguments (see Lewis and Shedler [1]) that

CPU Utilization lim

(9) E{ U(T + 1)

Z= fliE{max (Xi, r)}"
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As a final step, we observe that if al ((11), ..., (11) satisfies 0t(1)Q t()

and a(z)= ((12),..., (2)) satisfies a(2)Q(2)= a(2), then drawing on the block
structure of R it can be shown that

1)
flk= 2’ iJ1,

where the sum is over all k (1 ;i,j). In addition, it can be shown that

<j<J2,

where the sum is over all k (2;i,j).
Therefore by virtue of (7) and (9) we can conclude that

j=CPU Utilization

(10)
J Jz

j= j=

J J

j= j=

6. Numerical results. In this section we present some results of numerical
studies concerned with the relationship between locality in page reference strings
and the resulting execution interval processes, along with some implications of
this relationship for multiprogramming.

Two different n-vectors have been used in the numerical studies reported
in this section, the first being derived from "hit ratios" obtained by LRU stack
processing techniques from a trace of the execution of a COBOL program
(COBOL), the second being derived similarly from the execution of a sort-merge
(SM) program. The two "success functions" (ha + + vs. b) are displayed
in Fig. 6.

Given vector n (,, ..., n,), a value for f and a matrix P of the (n, f)-
graph such that nP n, the (stationary) mean execution interval in a given
amount of memory b is constant (equal to (+ + + ,)- ), independent of
the size of the favored set f or the value of the measure of locality E(F). The
distribution of the stationary execution interval, of course, is dependent on f
and E(F). In Table 1, for the COBOL trace, the variance, coefficient of variation,
and coefficient ofskewness are displayed for several typical stationary distributions
of execution intervals. For each value of f (equal to 2 or 5) the distribution sum-
marized is for memory size equal to f. In each case, a matrix P was obtained
according to the construction of Proposition 1 in ff 4. It can be shown for such
a choice of the matrix P that the distribution is determined by the value of the
measure of locality.

From Table 1, it appears that for fixed f, the variance of execution intervals
increases as the measure of locality increases. The stationary distributions of



234 G. S. SHEDLER AND C. TUNG

1.0

.7

o " 9 9 r (R)’ (R)

OSSM Trace (n 12)
OCOBOL Trace (n 12)

0 2 4 6 8 10 12
b

FIG. 6. "Hit ratio" curves

execution intervals are positively skewed, being longer tailed as the measure of
locality increases. Note also that in every case shown but one, the coefficient
of variation is at least equal to one, with somewhat greater coefficients of variation
observed over the range of the measure of locality for the larger value of f.

Taking CPU utilization as a measure of the effectiveness of multi-
programming, the queuing analysis of 5 makes it possible to begin to assess the

TABLE
Stationary distribution ofexecution intervals Xy in memory sizef(COBOL trace)

9.02
9.23
10.33
11.73
12.06
12.20
12.29

78.41
81.27
97.26

120.5
126.63
127.44
128.28

E(X,)

9.02
9.02
9.02
9.02
9.02
9.02
9.02

78.41
78.41
78.41
78.41
78.41
78.41
78.41

E((Xf fl)2)

78.97
82.34
99.95
122.41
127.73
128.43
129.11

6168.00
6610.00
9082.00
12682.00
13621.00
13745.00
13870.00

0.972
1.01
1.23
1.51
1.57
1.58
1.59

1.00
1.08
1.48
2.06
2.22
2.24
2.26

2.11
2.12
2.18
2.30
2.33
2.33
2.34

1.99
2.00
2.11
2.33
2.40
2.41
2.41



LOCALITY IN PAGE REFERENCE STRINGS 235

TABLE 2
Values of CPU utilization with multiprogramming, identical programs SM trace, equal partitions

DTU service times constant 10

E(F)

7.43
9.75
14.52
16.42

21.36
27.92
39.32
44.87

118.03
143.16
180.96
192.40

Total Amount of Memory B

4 10 12 14 16 18 20 22

.204 .612 .758 .858 .905 .954 .977 .994 .998 .999 1.000
204 .579 .710 .796 .853 .909 .952 .982 .991 .996 1.000
.204 .538 .658 .735 .804 .867 .929 .971 .984 .994 1.000
204 .527 .645 .721 .793 .857 .924 .968 .982 .993 1.000

.204 .619 .767 .866 .903 .953 .976 .994 .998 .999 1.000

.204 .609 .742 .823 .851 .908 .952 .982 .991 .996 1.000

.204 .598 .716 .781 .800 .865 .928 .970 .984 .994 1.000
204 .594 .710 .771 .789 .855 .923 .968 .983 .993 1.000

.204 .615 .764 .870 .914 .962 .980 .994 .998 .999 1.000

.204 .613 .761 .864 .907 .953 .970 .982 .991 .996 1.000

.204 .612 .757 .858 .900 .944 .959 .970 .984 .994 1.000
204 .611 .757 .857 .898 .941 .957 .967 .983 .993 1.000

implications for multiprogramming of the observed relationship between locality
and skewness of the execution interval distributions. Tables 2-4 display values
of CPU utilization with multiprogramming for the case of (statistically) identical
SM programs, under a memory management policy of equal partitions. In Tables
5-7 corresponding values are given for the case of (statistically) identical COBOL
programs. In each case reported, the DTU service times were taken to be constant.

These numerical studies suggest that lower CPU utilization results from a
set of programs having a greater measure of locality than from a set of programs
(with the same success functions) but a smaller measure of locality. Note also

TABLE 3
Values of CPU utilization with multiprogramming, identical programs SM trace, equal partitions

DTU service times constant 100

F4F)

7.43
9.75
14.52
16.42

21.36
27.92
39.32
44.87

118.03
143.16
180.96
192.40

Total Amount of Memory B

4 10 12 14 16 18 20 22

.020 .071 .106 .158 .203 .319 .442 .766 .933 .977 .997

.020 .071 .106 .158 .202 .313 .433 .728 .885 .952 .997

.020 .071 .106 .157 .200 .303 .420 .691 .839 .928 .997

.020 .071 .106 .156 .199 .299 .417 .682 .829 .923 .997

.020 .071 .106 .158 .203 .319 .442 .765 .933 .977 .997

.020 .071 .106 .158 .202 .313 .432 .728 .885 .952 .997

.020 .071 .106 .158 .200 .302 .419 .690 .839 .928 .997

.020 .071 .106 .158 .199 .298 .416 .681 .829 .923 .997

.020 .071 .106 .158 .203 .319 .444 .765 .933 .977 .997

.020 .071 .106 .158 .203 .319 .440 .727 .885 .952 .997

.020 .071 .106 .158 .203 .318 .436 .688 .838 .928 .997

.020 .071 .106 .158 .203 .318 .434 .679 .828 .923 .997
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TABLE 4
Values of CPU util.ation with multiprogramming, identical programs SM trace, equal partitions

DTU service times constant 1000

E(F)

7.43
9.75

14.52
16.42

21.36
27.92
39.32
44.87

118.03
143.16
180.96
192.40

Total Amount of Memory B

4 10 12 14 16 18 20 22

.002 .007 .011 .016 .020 .032 .047 .114 .271 .470 .805

.002 .007 .011 .016 .020 .032 .047 .114 .268 .458 .805

.002 .007 .011 .016 .020 .032 .047 .114 .262 .443 .806

.002 .007 .011 .016 .020 .032 .047 .114 .260 .439 .807

.002 .007 .011 .016 .020 .032 .047 .114 .271 .470 .805

.002 .007 .011 .016 .020 .032 .047 .114 .268 .458 .805

.002 .007 .011 .016 .020 .032 .047 .114 .262 .443 .806

.002 .007 .011 .016 .020 .032 .047 .114 .260 .439 .806

.002 .007 .011 .016 .020 .032 .047 .114 .271 .470 .805

.002 .007 .011 .016 .020 .032 .047 .114 .268 .458 .805

.002 .007 .011 .016 .020 .032 .047 .114 .262 .442 .806

.002 .007 .011 .016 .020 .032 .047 .114 .260 .438 .806

that for large values of DTU service time and equal partitions, values of CPU
utilization show little sensitivity to change in f.

The skewness of the distributions of execution intervals that has been
observed suggests that unequal partitions could give rise to a wide range of values
of CPU utilization, and in particular to values of CPU utilization substantially
higher than those realized by equal partitions. That this does in fact occur is
illustrated by the graphs of Figs. 7 and 8, in which, for a fixed (total) amount of
memory B, the maximum and minimum (over all partitions of memory of size B)
values ofCPU utilization are plotted as functions of B. Additional data, not repro-

TABLE 5
Values ofCPU utilization with multiprogramming, identicalprograms COBOL trace, equalpartitions

DTU service times constant 10

E(F)

9.23
10.33
11.73
12.11

81.26
97.25
120.54
127.42

304.26
409.01
617.09
696.96

Total Amount of Memory B

4 10 12 14 16 18 20 22

.158 .694 .948 .975 .989 .995 .996 .998 .999 .999 1.000

.158 .677 .903 .942 .974 .981 .985 .991 .994 .997 1.000

.158 .659 .859 .909 .959 .968 .975 .983 .990 .995 1.000

.158 .654 .849 .902 .956 .965 .972 .982 .989 .995 1.000

.158 .709 .959 .981 .989 .995 .996 .998 .999 1999 1.000

.158 .705 .947 .966 .973 .981 .985 .991 .994 .997 1.000

.158 .702 .934 .952 .958 .968 .974 .983 .990 .995 1.000

.158 .701 .932 .949 .955 .965 .972 .982 .989 .995 1.000

.158 .706 .959 .982 .992 .997 .997 .998 .999 .999 1.000

.158 .705 .954 .976 .985 .990 .990 .991 .994 .997 1.000

.158 .703 .949 .970 .979 .983 .983 .983 .990 .995 1.000

.158 .703 .948 .969 .977 .981 .982 .982 .989 .995 1.000
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FIG. 7. Extreme values ofCPU utilization (COBOL)

duced here, suggests that this range of CPU utilization is influenced by the value
of f, smaller values off giving rise generally to a greater range of CPU utilization.

TABLE 6
Values ofCPU utilization with multiprogramming, identical programs COBOL trace, equal partitions

DTU service times constant 100

E(F)

9.23
10.33
11.73
12.11

81.26
97.25

120.54
127.42

304.26
409.01
617.09
696.96

Total Amount of Memory B

10 12 14 16 18 20 22

.016 .090 .308 .466 .638 .861 .893 .937 .967 .985 .996

.016 .090 .303 .447 .614 .790 .828 .885 .931 .964 .996

.016 .090 .293 .420 .587 .722 .767 .836 .896 .945 .996

.016 .090 .290 .412 .581 .707 .754 .826 .888 .940 .997

.016 .090 .309 .468 .638 .861 .892 .937 .967 .985 .996

.016 .090 .308 .461 .612 .790 .828 .885 .931 .964 .996
0.16 .090 .307 .454 .585 .722 .767 .836 .986 .945 .996
.016 .090 .307 .452 .578 .706 .753 .825 .888 .940 .996

.016 .090 .309 .469 .643 .870 .898 .937 .967 .985 .996

.016 .090 .309 .466 .633 .834 .856 .885 .931 .964 .996

.016 .090 .308 .464 .622 .798 .816 .836 .896 .944 .996

.016 .090 .308 .463 .620 .791 .807 .825 .888 .940 .996
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FIG. 8. Extreme values ofCPU utilization (SM)

As a final remark, we note that the observed skewness of execution interval
distributions suggests that the program model of this paper would predict values
of CPU utilization in multiprogramming that are somewhat lower than those

TABLE 7
Values ofCPU utilization with multiprogramming, identical programs COBOL trace, equal partitions

DTU service times constant 1000

E(F)

9.23
10.33
11.73
12.11

81.26
97.25
120.54
127.42

304.26
409.01
617.09
696.96

Total Amount of Memory B

10 12 14 16 18 20 22

.002 .009 .031 .050 .078 .172 .203 .285 .408 .576 .769

.002 .009 .031 .050 .078 .172 .202 .281 .397 .554 .769

.002 .009 .031 .050 .078 .169 .199 .272 .380 .530 .769

.002 .009 .031 .050 .078 .167 .197 .270 .376 .524 .769

.002 .009 .031 .050 .078 .172 .203 .285 .408 .576 .768

.002 .009 .031 .050 .078 .172 .202 .281 .397 .554 .769

.002 .009 .031 .050 .078 .169 .199 .272 .380 .530 .769

.002 .009 .031 .050 .078 .167 .197 .269 .376 .524 .769

.002 .009 .031 .050 .078 .172 .203 .284 .408 .576 .768

.002 .009 .031 .050 .078 .172 .203 .281 .397 .554 .769

.002 .009 .031 .050 .078 .172 .202 .272 .380 .530 .769

.002 .009 .031 .050 .078 .172 .202 .269 .375 .524 .769
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resulting from the assumption ofgeometric (memoryless) distributions ofexecution
intervals. This has been verified numerically for the cases reported in this paper.

Appendix. Proof of Proposition 1. Any matrix P (Pij) of a labeled (n,f)-
graph is a stochastic matrix of the form

where the f x f matrix

the f x (n f) matrix

P2

the (n f) x f matrix

P3

IP P21e--
P P,,

and the (n f) x (n f) matrix

Pxx P12 Plf1
Pza P22 P2f[
Psi Ps2 P_]

1,f+ P l,f + 2

0 0

0 0

0 0

Pn 1,1 0

0 0

P4

0 Pf+ 1,f+2 0 0

0 0 Pf+ 2,f+ 3

0 p._ ,.
0 0 0 0

where the indicated Pij are all positive. Note that if P is to satisfy P , then

(A.1) Pl,f + ’f +

and that if p,z +j is chosen (2 _<_ j __< n f), then

(A.2) Pf + j- 1,f +
’f +j ’lPl,f +j

’f+j-
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and

Pf+J-l’l 1 s+j-

are determined.
Thus it will be sufficient to show that there exist positive p 1,f + j(2 =< j =< n f)

such that

(A.3) 0 <
f+j ;IPI,j’+j

< 1
,f+j-

and that there exist positive Pij (1 < i,j =< f) such that

f

Z Pij-- 1,
j=l

(A.4)
f

2 plj----- 1
j=l

f

Z iPij
i=1

f+ A- Pl,f+2 -+- nt- Pl,n),
f

E iPil "-’1 ’f+ lPf+ 1,1 f+2Pf+2,1 nPn, l"
i=1

2=<i=<f,

2_<j<=f,

It is easily verified that a solution to (4) is given by

72 nt- - fpx x + 2 "-- + f
Pi =frl + fr2 + +

P= 1 + z + + f’
if we ensure that p > O, i.e.,

(A.5) 1-
$ +2 "--+

f+l^ _. Pl,f+2 -4- + Pl,n

2<=i<=f,

1 <=i<=f, 2<=j<=f,

nf+ ._1_ Pl,f+2 -+- + P,,, > O,

and thus we must find positive Plj+j (2 <_j =< n-f) satisfying (3) and (5).
Therefore, using condition (i) of the hypothesis, we obtain a matrix P as required
if for 2 <_ j =< n f we choose pa,./j such that

(A.6) max 0, ’f +j -^-f +J-11 < px,f +j < f
7r, i

and

(72 nt-""" nt-f)7f+ i- 7 7f+P ,f + 2 + + P l,n < 1
"t" "-t- 1 --’1 "3t- "31-" "f ’1
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Conditions (ii) and (iii) of the hypothesis ensure that the two inequalities in (6)
are consistent.

Acknowledgment. The authors are indebted to J-P. Jacob for several stimu-
lating conversations during the course of this work. The method of calculating
CPU utilization given in 4 is based on an observation about cyclic queues by
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PROGRAM SCHEMES WITH PUSHDOWN STORES*

STEVEN BROWN, DAVID GRIES AND THOMAS SZYMANSKIf

Abstract. We attempt to characterize classes of schemes allowing pushdown stores, building on an
earlier work by Constable and Gries [1]. We study the effect (on the computational power) of allowing
one, two, or more pushdown stores, both with and without the ability to detect when a pds is empty.
A main result is that using one pds is computationally equivalent to allowing recursive functions.

We also study the effect of adding the ability to do integer arithmetic, and multidimensional arrays.

Key words. Program schemes, schemata, pushdown stores, stacks, recursion, programming
languages.

1. Introduction. In Constable and Gries [1] the following classes of schemes
were defined:

P class of schemes using simple variables, with assignment, conditional,
goto and while statements.

PA class of schemes P, with the additional feature of arrays of sub-
scripted variables.

PAe class of schemes PA, with the additional feature of an equality test
on subscript values.

PR class of schemes P, with the additional feature of ALGOL-like recursive
procedures.

PM class of schemes P, with the additional feature of a finite number of
distinguishable markers, or constants, allowed as values. (There may
appear arbitrarily many instances of a marker.)

Ppds class of schemes P, with the additional feature of pushdown stores.

P class of schemes P, with the additional feature of integer arithmetic.
One could then build other classes. For example, PAM is the class of schemes
allowing arrays and markers. In particular, Ptm,,) refers to the class of schemes
allowing m pushdown stores and n markers.

In a sense, a scheme is an abstraction of a program, and by studying these
classes of schemes we gain more understanding of the computational power of
the different data structures and control mechanisms used in programming
languages. A large part of a recent paper by Constable and Gries [1 was devoted
to showing the following inclusions and equivalences, where, for example, P < PR
means that for every scheme in P there exists an equivalent scheme in Pa but not
conversely; and PAe -= PAM means that for every scheme in PAe there exists an
equivalent scheme in PAM, and conversely:

P < PR ----< P(,o) < PA PAe -= PAM P(2,) -= P(,o)"
Hence you can "do more" with arrays than you can with recursive procedures.
It was claimed that PAe and equivalent classes are "universal." All the above
inclusions and equivalences are effective, except for PA -= PAe for any scheme

* Received by the editors May 17, 1972.

? Department of Computer Science, Cornell University, Ithaca, New York 14850. This research
was supported by the National Science Foundation under Grant GJ-28176.
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S PAe an equivalent scheme S’ e PA exists, but it cannot in general be constructed
In [1] it is assumed that all the basic functions and predicates are total.

This paper resolves some questions left open in [1], and discusses some more
inclusions and equivalences of classes of schemes, mostly having to do with
pushdown stores. Our results can be best given by the inclusion diagram of Fig. 1.

FIG. 1. Inclusion diagram for classes of schemata

Two new classes of schemes appear in the figure. PRg is the class of schemes
Pg allowing the additional feature of global variables (as used in AIcooI). Ppdsb is
the class of schemes Ppds with the additional feature of a test for the bottom of a
pushdown store. (In Ppas execution of a pop instruction has absolutely no effect
if the stack is empty.) Thus Pi2b,0) allows 2 pushdown stores, tests on emptiness of
these pds’s, and no markers.

The question mark on the line above P(2b,O) indicates an unsolved problem;
we do not know whether

P(2b,O) < P(3b,O) or P(2b,O) P(3b,O).
The inclusion diagram brings out some interesting points. Oddly enough,

adding the feature of markers adds nothing to the power of many classes we have

P=P, PR= PR, P(,o) P(,.) forn__>0, and PA=PA.
Only when adding markers to P(2,o) do we add computational power, and then
only one marker is needed to achieve "universality."

Adding the ability to do integer arithmetic, however, has more of an effect
on the computational power. Thus, adding integer arithmetic to PR or P(,o)
yields the "universal" class of schemes PR_ or P(,o).. Of special interest in the
diagram is P. Note how it "contains a piece" ofeach ofthe other classes. Accord-
ing to Corollary 10.9 of[l;, the characteristic property ofthis class is the following"
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Let S be any scheme in any class. Then there exists an equivalent scheme S’ P
if and only if there is a bound n and an equivalent effective functional in which
each expression and proposition can be evaluated using at most n variables.
Thus the characteristic property is that the scheme really needs only a fixed,
bounded number of variables, if it can internally perform integer arithmetic.

In [1], the pushdown store in Ppds WaS formulated so that a pop is a null
operation if the pds is empty. This was done solely because it was the "cleanest"
and easiest definition to work with. It is interesting to note that being able to test
for the bottom ofa pds is computationally important. Thus we have Pt2,o) < P(2b,O).
Of course P(1,o) P(xb,O), since P(x,o) Ptl,,) and we can simulate the test for
the bottom of a stack by using a marker. Note also that P(3b,O) is universal and thus
equivalent to

This paper is organized as follows. We assume the reader is familiar with [1]
and refer to all the definitions and results given there, without repeating them here.
The rest ofthis section is devoted to a few other necessary definitions and comments.

Section 2 discusses the equivalence of Pc 1,o) with PR. This means that the data
structure of a single stack is equivalent to the control mechanism of recursive
procedures. In 3 we relate P(1,o) to P(2,o) and P(,,o), and P(,,o) to PAe for n > 2.
Section 4 discusses the use of the statement which tests for the emptiness of a pds,
and relates classes P(nb,0) for n > 3, with P(zb,0) and P(2,o).

In .5 we show how P fits in. In the final section we solve another open prob-
lem of [1]; we show that adding multidimensional arrays to PA adds no more com-
putational power. All equivalences and inclusions shown in this paper are effective.

(1.1) DEFINITION. A scheme in the class PRg (Recursive functions allowing
global variables) is a scheme in PR (see [1, Def. 3.4]) with the following change"
the function definition may also have the form

(function def)’" f(vl, .", /)Rf) global w{, w} (body).

The global variables w in the statement "global w1, Wn" may not appear
in the formal parameter list v l, "’, VRf. Wl, Wn refer to the variables with the
same names (if any) used in the main (body) of the programs and they are not
initialized to upon invocation of the function (body). Note that if two (function
def)s declare the same name to be global, then the names refer to the same variable.

(1.2) DEFINITION. A scheme in the class Ppdsb (or P(lb,O), P(2b,O), ") is a scheme
in the class Ppds (or P(1,o), P(:,o), ")(see [1, Def. 4.7] and [1, 7]), with the following
additional statement type allowed:

(S)’" if EMPTYPDS(s) then [l :](S) else [l :](S)2

where s is a pushdown store.
We next define a functional which will be used frequently in this paper. Let

Leaftest(P, L, R, x)" (D) x (D) x o,(D) x D D

(1.3)

x if there exists a sequence
fl, f2, f, where each f/
is either L or R and
P(fo f-I f(x)) true;

undefined otherwise.
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Informally, Leaftest is a search performed on the following binary tree"

Leafiest searches this tree in an attempt to find a node whose value makes the
predicate P true. If such a node is found, Leafiest returns x as its output value;
otherwise, the search continues forever.

Leafiest has been an important functional in the brief history of "comparative
schematology." Paterson and Hewitt 13] first used it as a scheme which could not
be performed in PR. Gries and Constable [1] then gave a scheme in PA for it, to help
show that PR < PA. In this paper, Leafiest or variations of it are used to prove the
inclusions

P(,o) < P(,,o) for n > 1, P(,,o) < PA, P(,,o) < P(zb,O).
We shall also make use of "locators" in several proofs.
(1.4) DEFINITION. Given a scheme S (in any class), a locator S’ for S is a scheme

with the following properties:
(i) S and S’ use the same input variables, basic functions and predicates.
(ii) When executing, S’ attempts to find a predicate P of rank RP and two

lists of argument values a and a2 such that Pi(al) true, P(az) false. If it finds
them, S’ puts the values of a into variables RT ..., RTne puts the values of a2
into variables RF1, RFne,, and transfers control to a statement

BEGINs:halt (OMEGA).
(iii) If S’ does not find a predicate as in (ii), then

(a) if S executes infinitely long, then so does S’;
(b) if S halts with value V, then so does S’.

The chief use of a locator is in the construction of a scheme S’ without markers
equivalent to a scheme S which uses markers. Once the predicate is "located" as
described in the definition above, the markers of S can be "simulated" in S’ using
a sequence of the argument lists a l, a 2 as bits (see [1, Def. 5.1]). A main result
which we shall use is the following rewording of Theorem 5.5 of l].

(1.5) THEOREM. Let S be a scheme in some class. Let S’ in class P2 be a locator

for S. Suppose there exist P-simulators (see [1, Def. 5.1]) for S in Pe. The locator
and P-simulators can be put together toform a scheme S" in P2 equivalent to S.

Proof. Assume without loss of generality that the predicates P, ..., P, of a
scheme S all have rank 1. Then the locator we construct has the following form:

(1.6)
.’" P3()

Sl $2 $2"- $2"
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where the Si are statements. $1 for example must do the following:
(1.7) $1 must "simulate" the v (true,..., true)-autonomous behavior of S

until either
(i) it halts and outputs the same result that S would, or

(ii) a predicate Pi is evaluated with argument a2 such that Pi(a2)= false.
At this point RT is initialized to f, RF is set to a2, and control is transferred to
BEGIN

This is a very brief introduction to locators and simulators, and the reader is
encouraged to review 5 and 9 of [1].

Throughout the rest of this paper, all manipulations of pushdown stores will
be written using the following notation:

PUSH(pd, V) when executed, places the value currently stored in the variable
V on the top of the stack pd.

POP(pd, V) when executed, removes the top value from the stack pd and
assigns it to the variable V. If the stack pd is empty when this
statement is executed, then the operation is treated as a null
operation.

2. The equivalence of Pn and P1,0)" Theorem 7.5 of[1] showed that Pn =< PI,O).
Here we prove that P1,0) =< Pn, yielding the equivalence of Pn and P<l,o). Hence
a single stack is just as computationally powerful as recursive procedures. The
proof is a series of lemmas establishing the following inclusions, in order:

(2.1) Px,,) -<_ PRgM < PRg -< PR =< Pl,o) for n 0.

An obvious by-product is that neither global variables nor markers add anything
to the power of recursive procedures (Pn). A look at the proof of PngM =<
(Theorem 2.3) will also convince the reader that PM =< P and thus P P.

Suppose we have a scheme S Pn. We can translate S into an equivalent
scheme S1 Pl,o), then translate S1 into $2 PRgM, into $3 PRg, and finally into
$4 PR, again. You will note by the constructions of the lemmas that $4 uses only
one recursive procedure definition. Hence, for any scheme S PR which uses
n > 1 recursive procedures we can construct an equivalent scheme $4 in PR which
uses only one recursive procedure.

Another interesting point concerns the class Pl,o). Given any scheme S
we can construct an equivalent scheme S1 Pl,0) such that if S1 halts, its pds is
empty. This is quite remarkable since in Pl,o) one cannot test to see if the pds is
empty. This fact comes out easily from the constructions in the lemmas involved.

(2.2) LEMMA. Ptl,,) PRgM for n >= O.
Proof. Given a scheme S Ptl,, which uses a single pds P, we construct an

equivalent scheme $2 PRgS. The basic idea is to define a function F which is
essentially the same as the main scheme. The pds P becomes a simple variable P
which is a formal parameter of F, and the pds is represented by the "stack" of
invocations of F. Except .for a second formal parameter, all other variables are
global to F. This is illustrated in Fig. 2. When S P,,) executes the statement
PUSH(P, v) at (S) , the scheme $2 executes a call of F, with the value of V as the
argument. The main problem is that F should begin executing not at the first
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simple
variables

of original
main scheme

are

(P,I/’I)" (S)2" PUSH (P,I/’2)
POP (P,

(P,//1)" (S)2" PUSH(P,I/’2)

POP (P, I/’2)"

\

(P,V1)" (S) 2" PUSH(P,V2);
(S)4" POP(P, V2)" (S5"

second
invocation

of F

first
invocation

ofF

main
scheme

execution

FIG. 2. Representing a pds by function calls

statement, but at statement (S)z (see Fig. 2). We do this by passing a marker as a
second argument to F to indicate where it should begin executing.

Similarly, a pop instruction POP(P, w) is essentially a return instruction.
Again, we must make sure that the calling invocation of F does not begin executing
after its call (which was a push), but at the statement after this pop ((S) in Fig. 2).
To do this, the value returned by F is also a special marker.

Normal halts in F and pops in the main scheme must be handled similarly.
We leave the details to the Appendix.

(2.3) THEOREM. PRgM PRg"
Proof. We first show in Lemma 2.4 that we can construct P-simulators

PRg for any scheme PRgM (see [1, Def. 5.1]). According to Theorem 1.5, we then
need only show that for S PRgM we can construct a locator PRg. In Lemma 2.6
we establish the decidability of the finiteness of the v-autonomous behavior of
any scheme e PRgM (see [1, 9]). This important fact, and the method of the
decision, are used in Lemma 2.7 to build a locator P (and thus e PRg) for any
scheme PRgM.

(2.4) LEMMA. Let S PRgM use a predicate P. Then we can construct a P-
simulator $1 PRg"

Proof. We proceed essentially as in the proof of Theorem 5.3 of 1]. Assume
without loss of generality that P has rank 1, and that P(R T) true, P(RF) false,
where RT contains the value rt and RT contains rf.

Suppose S uses markers M, M2, Mk. Each variable v of S is represented
in $1 by variables v, v, ..., vk. The following table indicates the correspondence
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between values stored in v during execution of S, and in v, va, vk during
execution of SI"

variable v in S variables v, v v in S1

e D ?, rf rf
M fLrt, rf, ..., rf

mk fL rf rf rt

We leave it to the reader to show how to translate the statements v +--f(...
(where f is a basic function), v w, v Mi, if p( then... and if v Mi then
.., of S into equivalent statements for S1. The main problem is with calls and

returns of recursive functions.
Each function definition f(vl,’", v,): is transformed into f(vl, vl,...,

vk,): ..., SO that the parameters get passed properly. For a callVkl Vn, Vn,
of a recursive function

(2.5) w +-- f(v v,)

in S, however, we must return values not only for w, but also for wa, wk.
These will be returned in new global variables xa, xk. Add them to the list
of global variables in each function definition. Now change each call (2.5) to

gi f( kn).be n w ,-- Vl,V ..., v ..., vn, vn, "", v

W 4-- X 1" W -- Xk"

end

and change each halt(v) within a function definition to

begin x - v1"...’, xk ,- vk’, halt(v)end

Q.E.D.

(2.6) LEMMA. It is decidable whether the v-autonomous behavior of a scheme in

PRgM is finite or infinite.
Proof. We can assume that the global variables of S are V1, "-, V and that

by suitable renaming of variables, they are not used as local variables or formal
parameters.. Assume that S is completely labeled. Let r be the largest of the ranks
of the recursive functions of S, and let S use markers M1, "’", Mm-1" Let S use
predicates P1, "’", P,.

Consider the v-autonomous behavior ofS, described in 1, (9.9)]. This behavior
does not depend on the input values, or on which value of the domain D is in any
variable at any point. Using to denote any value in D, the m possible values that
can affect the behavior at some point are , M1, "’", Mm- 1"

If the v-autonomous behavior is infinite, then one of the two following things
must happen" (i) the level of nesting of function invocations is infinite; or (ii)
within the execution of a function (or main program), there must be an infinite
loop. We now derive bounds on the nesting of function invocations and the
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number of statements executed within a function which, if reached, indicate there
is infinite behavior.

Suppose there is a call v ,,-- f( of a recursive function. The behavior of
the scheme while f is executing depends only on the values of the actual parameters
and of the global variables V1, "", Vg. Hence there are at most

m(r + g) possible different behaviors.

Thus, if a recursive function f is called recursively m(r + g) + times (without
returning), two calls on f have already occurred with the same actual parameter
and global variable values (,MI,..., Mm_). Neither of these two calls will
finish and the scheme is in an infinite loop.

Second, consider the v-autonomous behavior within a recursive function f
(of the main scheme). Suppose f has s statements and local variables (including
the formal parameters). Then we know the recursive function has infinite v-
autonomous behavior if the behavior has as many as s. r. (1 + m) + 1 labels in it.

Q.E.D.
(2.7) LEMMA. Every scheme S in PRgM has a locator S’ in P.
Proof. The locator S’ for S has the form shown in (1.6). We need only show

how to construct the statements S, ..., $2, described there. We outline in the
Appendix the construction of S only which simulates the v-autonomous behavior
of S where v (true, ..-, true), as described in (1.7). The construction of the other

Si is similar. The important point to note is that we can effectively decide whether
the v-autonomous behavior of S is finite or infinite (Lemma 2.6). Q.E.D.

(2.8) LEMMA. PRg PR"
Proof. Suppose scheme SPRg has function definitions for functions

F,..., F,, and suppose that the variables used globally are VI,..., Vm. By
suitably renaming the local variables we can make sure that V,..., V are used
only as global variables, and we can assume S has the form

(v, ..., v). (s); (s)

(2.9)

F(v,..., v)" global V, ..., V,,; (S>; ;(S>

F,,(v,..., v)" global V, ..., V,,,; (S);.--

We give in the Appendix a construction which reduces by one the number of
global variables. By executing this construction m times, we arrive at an equivalent
scheme in PRM. What this construction does is make V1 a parameter of each
function. This creates the problem that we cannot return the value of V, so what
we do first is call F (say) to get the function value back, and then call a similar
routine F’ which returns the value for V. Q.E.D.

3. Markerless pds schemes. In this section we show that

eh > P(,,o) -= e(2,o) > e(1,o) for n >__ 2.

The proper inclusions are both proved using the Leafiest scheme or a variation of it.
A second important idea is proved in Lemma 3.2; for any scheme S

we can construct a locator in P. We use this to show the following result.
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(3.1) THEOREM. P,,o) =- P(2,o)for n >= 2.
Proof. Lemma 3.2 shows how to construct a locator in P for S e P,,0);

because of Theorem 1.5 we need only show how to construct P-simulators in
P(2,o) for S. Consider S to be in PpdsM rather than Ppds and use Theorem 7.3 of [1]
to construct S1 P(2,) equivalent to S.

We construct a simulator $2 P(2,0) for S1 (and thus for S) by simulating the
single marker. We represent each simple variable V of S1 by variables V and V’
and initially set each V’ to rf.

To produce the P-simulator we make a copy S’ of S and change it as follows
(we assume without loss of generality that all predicates have rank 1)"

(a) At the beginning of S’ insert for every simple variable V the statement
V’RF.

(b) For the pds’s PD and PD2 add at the beginning of S’

PUSH(PD1,RF); PUSH(PDZ, RF);

to indicate they are empty.
(c) Change each PUSH(PDj, V) (except those inserted in (b)) to

begin PUSH(PDj, V); PUSH(PDj, V’); PUSH(PDj, RT) end

(d) Change each POP(PDj, V) to

begin P0P(PDj, X);

if P(X) then

begin POP(PDj, V’); POP(PDj, V)end

else PUSH(PDj, X)

end

where X is a new temporary variable. This construction allows a pop of an empty
pds to be treated as a null operation.

(e) Change each assignment V,-- W to

begin V W; V’ W’ end

(f) Change each assignment V M to

begin V +-- OMEGA V’ RT end

(g) Change each assignment V f( to

begin V f( ); V’- RF end

(h) Change each test

if V M then ($1) else ($2

to

if P(V’) then (S ) else ( 52

It should be clear from the construction that the modified S’ runs in Pz,o) and
simulates the behavior of S exactly. Q.E.D.
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(3.2) LEMMA. For any scheme S P,,o) we can construct a locator S’ P.
Proof. The locator has the form given in (1.6). We show how to construct

only statement S of (1.6) as described in (1.7).
Assume that S has IS[ statements. We first show that under autonomous

behavior the scheme references at most the top IS[ locations of any pds. With
constant predicates, S executes (say) statements, =< [S[, and then halts (hence
at most locations of any pds can be referenced), or executes different statements
and then enters an infinite loop, where the loop consists of r =< [SI statements.

If a pds has a net growth during execution of the r statements of the loop, then
no element lower than [$1/2 from the top can be referenced. On the other hand, if a
pds shrinks in size or remains the same during one execution of the loop, then the
stack size is at most + r/2 <=

We now show how to construct $1. We generate (ISI / 1) different copies
of S (changing the labels so the copies are independent). Let the copies be denoted
by S’ili2...in, where each denotes the number of occupied positions in simulated
stack j. Clearly the initial "state" is Soo...o. We shall assign new labels to every
statement in every copy’the labels will be lJ. wherej 1,... ISI and the

are keyed to the copy.
The copies are then altered and connected in the following way. Consider

the pushdown stack m.

(a) In all copies S’i...,,_ ,0,, ...,, all statements popping stack m are replaced
by the null statement.

(b) In all copies S’......,, where < ISI, after each PUSH statement
labeled li...i,..., for stack m we insert

lj+lgo to -i...i,+ ...in

(c) In all copies S’i...i,...i,, im > O, after each stack m POP statement labeled
lil...i...i, we insert

lJ+lgo to "i"’im-’"i,

Most of this complexity is to guarantee that a null operation is performed if an
empty stack is popped.

Assume now without loss of generality that all predicates are monadic and
that we have Pi(RT) true for each predicate P. (We are creating S of (1.6)
only, now.) We represent each pds p by new simple variables Vp,1,-..,
We modify all PUSH(p, w) statements and all POP(p, w) statements (in all copies
of S) as follows"

(a) Change PUSH(p, w) to

begin Vp, tS -- Vp, iSl_ ;... Vp, 2 Vp, Vp, -- W end

(b) Change POP(p, w) to

begin W,-- Vp, Vp, Vp,2 ;’" Vp,lsl-1 *- Vp, lS ena
We also replace each statement

if Pi(X) then (S1) else (S2)
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by

if Pi(X) then (Sx)

and add statements
else begin RF X; go to BEGIN end

BEGINi halt (OMEGA);

at the end of the scheme. The result of these transformations is statement S x.
Q.E.D.

(3.3) LEMMA. Leafiest cannot be computed in P(n,o).
Proof. Suppose S P(,,o) computes Leaftest (P, L, R, X). Now consider the

following scheme S’:

S’(P,L,R,X): V X;

if P(X) then go to BEGINs;
Locator (S);

BEGIN halt(V)

The notation "Locator (S)" refers to the body of the locator scheme for S con-
structed according to Lemma 3.2. Control is passed to the label BEGIN by the
locator only if Locator (S) has generated some value for which P is true, since P
is the only predicate in S which can potentially take on both true and false values.
By the construction of S’ the only new values which S’ can generate are con-
catenated applications of the functions L and R applied to the initial value X.
By definition these are just node values in the binary tree generated by X, L and R.
Hence, control is passed to BEGIN only if a value is found for which P is true.
It should be equally clear that if there is any value in the tree which makes P true,
Locator (S) by hypothesis will eventually find it and will transfer control to

BEGINa
We must also consider the possibility that Locator (S) will stop on the value

f2, which can arise in several situations, according to the definitions of schemata
behavior (see [13). We can eliminate this case by observing that the value of the
Leaftest functional is by definition independent of the truth value of P(f2). Since
Locator (S) is a P-scheme (Lemma 2.1), it has only a finite number of variables,
and we can modify Locator (S) so as to keep track of which locations contain the
value f. This is done by keeping many copies of the scheme, such that each copy
corresponds to particular variables V, ..., Vt containing f2 and all other variables
containing computed values. By this means, therefore, we can force a false branch
whenever P(f2) is tested. Such a locator clearly performs the same locator tasks
as the original one.

After having taken care of the f2 problem as above, we see that S’ is equivalent
to S. Referring once again to Lemma 2.1, we note that since the modified Locator (S)
is a P-scheme, S’ is also a P-scheme. But S must still be able to compute Leaftest
in its full generality, and we therefore would have a P-scheme S’ which computes
Leafiest. But this contradicts the result of [4] in which it is shown that Leafiest
cannot be computed in PR (and hence not in P). Thus S could not have existed
and Leafiest is not computable in P(,,o). Q.E.D.
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(3.4) THEOREM. P(,,o) < PA.
Proof. Consider S e P(,,o) to be in PpdsM. By Theorem 8.2 of [1] we can con-

struct an equivalent scheme S1 PAM, and by Theorem 5.4 of[l we can construct
P-simulators for it in PA. Second, by Lemma 3.2, we can construct a Locator in P
(and hence in PA) for S. We then apply Theorem 1.5.

Theorem 6.6 of Ill and Lemma 3.3 show that the containment is proper.
Q.E.D.

(3.5) THEOREM. Ptl,o) < P(2,o).
Proof. Clearly Ptl,o)_-< P2,o); to show that the containment is proper we

exhibit a function computable in Pt2,o) but not in Ptl,o). Consider the functional
f(P,L,R,X, Y,Z):

if P(Y) and P(Z) then Leafiest (P, L, R, X) else X

First we show how to compute the above functional in P2,o). Clearly we can write
Leaftest(P, L, R, X) as a scheme in P2,) since we can do it in P and P, P2,).
Lemma 3.1 shows how to construct a P-simulator for Leafiest in P2,o. The follow-
ing scheme in P2,o then computes the above functional:

(X, Y, Z):if P( Y) and --q P(Z) then

begin RT - Y RF Z;

{P-simulator in Pt2,o)for Leaftest}
end

else halt (X);

Suppose now we have a scheme S(P, L, R, X, Y, Z)s Ptl,o) which computes
the above functional f. From it we construct a scheme S’(P,L,R, X)e
which computes Leaftest(P, L, R, X). Since S’e Ptl,m) m Ptl,O)--PR and Leaf-
test(P, L, R, X) cannot be performed in PR (1, Thm. 6.6]) we have a contradiction
to the fact that a scheme to compute f existed in

To construct S’(P, L, R, X) perform the following. LetM 1, M2 be two markers,
and let W be a new variable. Insert at the beginning of S the statements

Y<--M1; Z<--M2;

Then change each conditional

if P(V) then S else $2

of S to

if V-- MlthenS1
else if V M2 then $2

else if P(V) then $1 else S2

We must show that S’(P, L, R, X) Leaftest(P, L, R, X) for all domains D and all
interpretations of P, L, R, and X. For any interpretation, consider the domain
D’ D U {M1, M2} (where D {M 1, M2} ), predicate P’, and functions
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F’, L’, where

P’(d) P(d) for d 6 D,

L’(d) L(d) for d 6 D,

R’(d) R(d) for d D,

A look at S and S’ will show that

S(P’, L’, R’, X, M1, M2) S’(P, L, R, X)

P’(M 1) true,

L’(M1) M1,

R’(M1) M1,

P’(M2) false,

L’(M2) M2,

R’(M2) M2.

for X D.

But, by definition of f we have S(P’, L’, R’, X) S’(P’, L’, R’, X) Leaftest
(P’, L’, R’, X) Leafiest(P, L, R, X) for X e D. Q.E.D.

4. Bottom markers and pds’s. A major drawback to programming in
is the inability to locate the bottom of a pushdown store. This makes it impossible
to perform such useful tasks as transferring the contents of one pds into another
while perhaps performing some action on each value as it goes by. However,
every "real" programming language incorporating stacks or pds’s also contains
primitives which allow either the trapping of an interrupt on pds underflow or
else explicit testing for empty pds’s.

Accordingly, we extend the class P(,,o) by adding to the language the construct

if EMPTYPDS(pd) then (S1) else ($2)

The semantics of this statement should be obvious. This new class will be called
P(nb,0), where the b is intended to remind the reader that we now have the ability
to find the bottom of the pds.

Intuitively, the ability to test for the bottom of a pds is less powerful than the
ability to place markers in it. Classes utilizing markers are allowed an unbounded
number of copies of the markers which can occur anywhere, whereas marking the
bottom of each pds is equivalent to using only a fixed number of copies of each
marker and requiring that the markers always appear in a certain relative position.

We prove in this section the expected result that P(lb,O) P(1,o). We also
show that P(3b,O) is effectively equivalent to the "universal" classes PAM, PAe
and P(2,1). As far as P(zb,0) is concerned, we show that

P(2b,O) > P(2,o) > P(lb,O) = P(1,o).
However, we do not know whether P(zb,o) is equivalent to P(3b,O) or not. This
open problem will be discussed at the end of the section.

(4.1) LMMA. P(nb,0) < P(n,1)for any n >= 1.
Proof. Given a scheme S in P(nb,0), we must construct an equivalent scheme

S’S’ in P(,,1). uses a marker M. We insert at the beginning of S statements to push
M onto each pds. Next we replace all tests for an empty pds by tests for M at the
top of the pds. This also requires changes in POP statements. We leave the details
to the reader. Q.E.D.

(4.2) THEOREM. P(lb,0) P(1,1)--- P(1,o).
Proof. Clearly P(1,o) =< P(lb,0). By Lemma 4.1 we know that P(lb,O) =< P(1,1).

By 2, P(1,1 P(,o). Q.E.D.
(4.3) THORZM. P(nb,0) PAM"
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Proof. By Lemma 4.1 we have P(nb,0) P(,,1)and by [1, Thm. 8.2],
P(,,1) =< PAM. Q.E.D.

We are now ready to discuss the "universality" of P(3b,O). We do this in two
parts. First of all, we show that for any scheme S in PAe there exists a scheme S’
in P(,0)_ which does not store integer values on the stack. This result arises easily
from some results in [1] concerning effective, functionals and program schemes.
Secondly, Lemma 4.5 will show how to construct a scheme in P(3b,O) equivalent
toS’.

(4.4) LEMMA. For any scheme S in PAe there exists an equivalent scheme S’ in

P(,o)_ which does not store integer values on its pds.
Proof. Assertion 10.6 of [1] says that there exists an effective functional F

equivalent to S (see [1, Def. 10.3]); Assertion 10.8 of 1] then states that there
exists a scheme S’ in P(,o)_ equivalent to F and thus equivalent to S. In the con-
structions in Assertions 10.6 and 10.8 of [1], S’ has the form given in Fig. 3.

1
Construct the Ith |

computation in a
simple variable C

Evaluate in Ccomputation

yields a value
in variable V

yields no value ’I + 1"

FIG. 3

This scheme S’ satisfies the desired property the pds is used only to hold temporary
values in D occurring during the evaluation of computation C. Each computation
is constructed in Polish postfix form encoded as an integer in a single variable,
and uses only a finite number of simple variables. Q.E.D.

(4.5) LEMMA. Let S be a scheme in P(,0)_ which never stores an integer value
on its pds PD. Then we can find an equivalent scheme S’ in P(3b,0).

Proof. In addition to pds PD, S’ uses two pds’s PD and PD2 as counters to
simulate the contents of the integer variables and arithmetic in the finite control
of S. We first modify the scheme S so that its set of variables can be partitioned
into a set {X1, ..., Xk} which is used only for manipulating domain values and
a set V1, "", Vm} which is used only for holding integer values. This modification
can easily be made by "splitting" each variable of the original scheme into two
copies and adding some states to the finite control ofS. The Xi and V/work together
in that whenever the simulated variable to which an (Xi, Vi) pair corresponds
contains a domain element, X contains the element and V 0; whenever the
simulated variable contains an integer, Xi and V/contains the integer.



256 STEVEN BROWN, DAVID GRIES AND THOMAS SZYMANSKI

At any point in simulated time, the height of pds PD of S’ will be

where the pi’s are distinct prime numbers and C(V) represents the contents of
variable V. We retain the simple variables Xi for holding domain values. Since
all V/contain 0 initially, we initialize PD to a height of by pushing f into the
stack. We must now show how to simulate the primitive arithmetic operations of
V V+ 1, V- V- landV0.

1. Replace each statement V V + by a compound statement which
"pours" the contents of pds I’D into pds I’D2, inserting p new elements into
I’D2 with each element that is transferred from I’D1 to I’D2. This multiplies the
stack height by p. We can then restore the canonical state by pouring the elements
back into I’D from I’D2.

2. Replace each test for V 0 by a compound statement which pours I’D1
into I’D2, computing Z IPDI] mod p. Thus V 0 if and only if Z 0. We
then restore the canonical state.

3. Replace each statement V V by a compound statement which
first tests for V 0 and does nothing further if true. Otherwise, we pour I’D1
into I’D2, pushing onto I’D2 only one element for every p that is popped from
I’D1. We then restore the canonical state. Q.E.D.

(4.6) Tx-IOrM. PAe P3b,O)"
Proof. Apply Lemmas 4.4 and 4.5 to get Pae l3b,0) Apply Theorem 4.3

and the fact that PAM 13ae (1, Thm. 8.81) to get P3b,0) lae Q.E.D.
(4.7) TIzORZrvi. l(2b,0) > P,,o)for n >= 1.
Proof. The relations l(2b,0) 1(2,0) l(n,0) from left to right are (i) obvious,

and (ii) proved in Theorem 3.1. We need only find a functional which is l(2b,0)
computable but not P,,o) computable. Leaftest (see Introduction) is not P,,,o
computable by Lemma 3.4. We show it can be performed in 13(2b,0) by the following
algorithm (using pds’s I’D and I’D2).

Step 1. Initialize I’D to contain a copy of the input X.
Step 2. Transfer the contents of I’D1 to I’D2, applying the predicate I" to

each value moved. Halt if any value yields true.
Step 3. Compute L(V) and R(V) for each value V in I’D2, storing the results

in I’D as they are computed. When I’D2 becomes empty, return to Step 2.
The ability to test for an empty stack is crucial here, because it allows us to

tell when all values have been transferred. Q.E.D.
We have carefully avoided discussing the class l(2b,0) in this section because

this class has resisted our best attempts at characterization. Intuitively, two pds’s
seem o be adequate for control purposes, because such a configuration is essentially
a two-counter machine 3 and has sufficient power o simulate any Turing machine.
Moreover, even with one pushdown store available we have as much room for
intermediate results as is necessary. Thus at first glance, it would seem likely that
the operation of the two control stacks could be merged with that of the work
stack and hence we could prove that P2b,0).is also universal. However, none of
our attempts to do this has been successful.

We shall now introduce a functional which is a generalization of Leaftest
and which is pertinent to the discussion of the power of P(Zb,0). Suppose we are
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given a set of functions {F,, ..., Fk}, a set of predicates {P,, ..., P,,} and a set
of values {x l, ..., xn}. The class of all "arithmetic" expressions generable from
these objects may be represented by the following context-free grammar"

E--+Xll ...Ix
g -- FI(E, E)

times

E -* Fk(E,’", E)
RFk
times

We now define"
(4.8) Husearch (FI, Fk, P1, Pro, X l, Xn)

x if :! an integer and expressions

E through ERe (as defined by E above)

Pi(E )=true"1, ERPi
undefined otherwise.

Thus, Husearch searches the Herbrand Universe generated by the Fi’s and x.i’s.
Constable and Gries [1, Construction 9.11 showed how to perform this

search in PA. A thorough discussion of the search program in PA is given by
Gries [2].

(4.9) THEOREM. P(2b,O) -= P(3b,O) if and only if the Husearch functional can be
computed in P(2b,O).

Proof. The "only if" portion follows immediately from [1, Construction 7.11]
and Theorem 4.6. To prove the "if" part, we sketch how the Husearch com-
putation can be used to construct a locator in P(2b,O) for a scheme S e P(3b,0).
Once we have such a locator we can use the values it generates to simulate markers
and thus have universal power [1, Thm. 8.4].

Therefore, suppose we are given a scheme S e P(3b,0). Let us assume autono-
mous behavior for S. Using the same approach as in the proof of Lemma 2.7, we
first ascertain whether the autonomous behavior is finite or infinite. If it is finite,
we can clearly construct a locator in P. If the autonomous behavior is infinite, we
launch into the Husearch computation. If Husearch never halts, then S cannot
halt (though the converse is clearly not true). If Husearch does halt, we can then
simulate S directly with the values it returns. Q.E.D.

Notice that the construction outlined in this theorem is noneffective, because
it is recursively unsolvable whether the autonomous behavior of an arbitrary
P(3b,0) scheme is finite or infinite. Even if we could "program" the Husearch
functional in P(2b,O), we still would have left as an open problem whether or not
the two classes P(2b,0) and P(3b,O) are effectively equivalent.

We may note that in the simple case in which S is a scheme using only monadic
functions and predicates of any rank then Husearch can be computed in P(2b,O)
and there does exist S’ e P(2b,O) such that S’ S. However, all attempts to program
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the general Husearch in P(2b,0) have so far failed, leading us to the following
conjecture.

(4.10) CONJECTURE. P(Zb,O) < P(3b,O)’
In some sense P(2b,0) is very "close" to the universal power of Pb,O), because

the slightest additional power given to P(2b,O) makes it universal. In particular,
let us give P2b,O) one "chip" which it can place anywhere in its stacks and for
which it can test. Note that there is only one copy of this chip C, so if we execute
the statements

V-C;

PUSH(PD 1, V);

if V C the...

the predicate must be false. We assume that only the latest copy of C exists, and
other instances (such as in V above) are replaced by f. For convenience, we
assume that as long as the chip is in a simple variable it is "moved around" by
assignments; that is, the sequence

V-C;

WC;

X-C;

results in V and W having the value and X containing the chip. However, when
the chip enters a data structure (such as a pushdown stack) it becomes inaccessible
until it is later fetched by the data structure accessing primitives. Thus,

X ,-- C;

PUSH(PD1, X);

Y<--C;

while syntactically valid, results in both X and Y containing the value f and the
chip being on the top of the pds. If a POP(PD1, W) is executed, W then contains
the chip. The concept of a chip is difficult to express clearly because it is antithetical
to the usual notion of the contents of a variable.

(4.11) THEOREM. P(2b,O)C P(3b,O), where the equivalence is effective.
Proof. (i)P(3b,0)>----P(2b,O)C. We know from Theorem 4.6 that P(3b,O)is

universal, and therefore by Theorems 8.4 and 7.3 of [1],
elf elf

P(3b,O) P(2,) P(2,3)
(two stacks and three markers).

Containment is obvious between P2,3 and P(2b,O)C"
(ii) P(3b,0) P(zb,0)C’

The argument in this direction depends on a G6delization of the three pds’s of
an arbitrary scheme S in P(3b,O), SO that these pds’s can be represented in a new
scheme S’ in P(2b,0)c" The method of pds storage, where PD1 contains values
al, a2,... PD2 contains bl, b2, and PD3 contains c, c2, .", is shown in
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Fig. 4. In the simulation given below we assume that we initialize PD1 by
PUSH(PDI, OMEGA); and that the resting configuration (between pds activity)
is for the entire pds to be in PD and for PD2 to be empty.

Note "ragged edge"
if pds’s of S do not
have same number
of elements

padding

a

b

c

b

c

ak+

Ck+

f

*--top of S’ pds

The total height of the
S’ pds PD1 is

IPD11 pllalp21blp31cl,

where la[, Ib], Icl are the
lengths of the S pds’s and
the Pi are distinct primes.
We obtain this height by
inserting the proper padding
at the bottom, as shown.
Note that there will always
be some padding if there
are any pds elements.

f I--- bottom of S’ pds

FIG. 4

Now we shall show how to push, pop, and test for emptiness any of the three
pds’s

Push ontoj-th pds. We need to multiply the pds length in S’ by pj, then move
every element in thejth pds of S down 3 positions, and finally insert the new element
in the jth position. We do this by

until EMPTYPDS(PD1) do

begin POP(PD1, V); PUSH(PD2, V)end;

(thus moving the pds to PD2) (The section below uses the chip to multiply the pds
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size by pj, inserting the padding at the bottom of the pds.)

until EMPTYPDS(PD2) do

begin

POP(PD2, V); PUSH(PD2, C); PUSH(PD2, V);

until EMPTYPDS(PD 1) do

begin POP(PD1, V); PUSH(PD2, V) end;

PUSH(PD1, OMEGA); (repeated pj times)

POP(PD2, V);

until V (R) C do

begin PUSH(PD1, V); POP(PD2, V)end

end

(Now we insert the new element and shift other elements of pds j down 3 positions.)
POP(PD1, V); PUSH(PD2, V); (repeated j times)
V1 +-- new item;

until EMPTYPDS(PD 1) do

begin

PUSH(PD2, V 1); POP(PD 1, V 1);

if--MPTY PDS(PD1) do

begin POP(PD 1, V) PUSH(PD2, V) end

if - EMPTYPDS(PD 1) do

begin POP(PD 1, V) PUSH(PD2, V) end

end;

(The element shifted off the bottom will be just padding.)

until EMPTYPDS(PD2) do begin POP(PD2, V); PUSH(PD1, V) end

(thus restoring PD 1)
Test for emptiness ofj-th pds. To simulate the statement

if EMPTYPDS(PDS) then (Sx) else ($2)

we simply pour from PD to PD2, computing Z [PDI[ mod pj. The jth pds is
empty if and only if Z 4: 0. Details are left to the reader,

Pop from j-th pds. We first test the jth pds for emptiness and do nothing if it
is empty. Otherwise, the behavior is analogous to that for the push; we take the
jth element of PD 1 as the one desired, percolate the (3 + j’)th element to the jth
position, etc., and divide ]PD1] by pj. The division is accomplished by starting C
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from the top of PD1 and moving it downward. At each move we cut off pj
elements from the bottom of PD1 by appropriate pouring manipulation. We
terminate when C reaches the bottom of the shrinking stack.

To construct S’ given S, we simply duplicate the body of S and substitute for
each PUSH, POP and bottom test the code described above. That the scheme so
created mimics S should be clear from the construction.

Hence, since we have shown P(3b,0) P(zb,0)C and P(3b,0) P(zb,o)c effectively,
the theorem is established. Q.E.D.

5. Schemes and integer arithmetic. In this section we shall investigate the
power of some classes of schemes whose control structures have been augmented
by the ability to do integer arithmetic. Accordingly, we allow the statements
V ,-- 0, V ,--- V + 1, V V and the conditional statement if V (C) 0 then ($1)
else ($2). We leave it to the reader to show how more complicated statements,
such as V/ V or V/ V Vk, or indeed any computable function over the
integers can be built up from these primitive statements. The formal definition of
this new class P is given in 1, (4.9).

It has already been shown in Theorem 10.10 of [1] that the class Pl,O)_ is
universal in the sense of being effectively equivalent to the classes Pae, P<3b,O),
etc. In the remaining portions of this section we characterize the class P and
find that it partially overlaps the classes PR and P<2,o) but is properly contained in

P<2b,O). The reason for this rather unusual property is the immense power of the
control structure of a P scheme (indeed, we have enough power to simulate an
arbitrary Turing machine) coupled with the restriction of a fixed number of
locations for computing results over the output domain.

Our basic tool here involves the functional Evalcutset first described in 4]:

Evalcutset (x) if P(x) then x else

H(Evalcutset(L(x)), Evalcutset(R(x))).

Intuitively, Evalcutset does the following:
(a) examines the infinite binary tree formed by the monadic functions L and

R operating on the value input in x;
(b) finds the (unique) minimal cutset of this tree such that all nodes in the

cutset make P true;
(c) treats the portion ofthe tree above and including this cutset as a description

of an arithmetic expression in H, L, R and x;
(d) evaluates the expression so defined.
In 4] it was shown that Evalcutset cannot be computed using a fixed number

of variables because an unbounded number of temporary results will in general
be necessary for this computation. This then implies that Evalcutset cannot be
computed in P and furthermore implies that any functional which requires an
evaluation of Evalcutset independent of the other inputs to the functional cannot
be computed in P either.

We shall find the following fact concerning monadic functions useful.
(5.1) THEOREM. Consider the restriction of schemes to monadic functions only

(predicates may have any rank). Then P =_ PAe.
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Proof. Clearly P __< PAe" Consider a scheme S in PAe, and construct an
equivalent effective functional F ([1, Thm. 10.6]). Since all functions are monadic,
all expressions in the computations of F have the form fl(fz("" (f(x))...)),
where the f/are function names and x is an input variable. Any expression can
thus be evaluated using one variable. Any proposition P(ei, en) can hence be
evaluated using n variables. By Corollary 10.9 of[1 we can construct an equivalent
scheme in P. Q.E.D.

In order to characterize P, we now introduce 6 functionals, each using the
monadic predicate P, the monadic functions L and R, the dynadic function H and
the input variables w, x, y, z.

fl I W if Evalcutset(P, L, R, H, w)
is defined,

undefined otherwise;

f2 l Evalcutset(P, L, R, H, w)
I
l, undefined

undefined

f4 I Evalcutset(P, L, R, H, w)

undefined

f5 undefined

Evalcutset(P, L, R, H, w)f6 undefined

if Evalcutset(P, L, R, H, w)
is defined,

otherwise;

if P(x) A -qP(y) /X

Leaftest(P, L, R, z) is defined,
otherwise;

if P(x) A -riP(y)A
Leaftest(P, L, R, ) is defined,

otherwise;

if Leaftest(P, L, R, z) is defined,
otherwise;

if Leaftest(P, L, R, x) is defined,
otherwise.

Clearly, f2, f4 and f6 cannot be computed in P since each of them must
conditionally evaluate Evalcutset which needs an unbounded number of variables.
On the other hand, consider functionalsfl ,f3, and fs. We do not have to evaluate
Evalcutset; we just have to know whether it is defined, and we can tell this by the
following functional:

Evalcutsetdef(x) if P(x) then true

else Evalcutsetdef(L(x)) and Evalcutset(R(x))

Evalcutset and Leafiest can both be programmed in PAe using only monadic
functions, and hence, by Theorem 5.1 can be computed in P_. Hence, fl,f3, and
f5 are computable in P_.

We exhibit in Fig. 5 a Venn diagram of the classes P, PR, P(2,o), P(zb,o), P_
and place each of the functionals f in the most restrictive class which permits its
computation.

(5.2) LEMMA. fa and f2 can be computed in PR"
Proof. The proof is an obvious programming exercise.
(5.3) LEMMA. f3 and f4 can be computed in P(2,o)but not in PR.
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P

FIG. 5

Proof. The test P(x) / -P(y) gives us the necessary values with which to
simulate markers. Once we have markers we essentially have a universal scheme.
Finally, Theorem 3.5 shows why neither f3 nor f4 can be computed in PR-

(5.4) LEMMA. f5 and f6 can be computed in P(zb,o)but not in P(2,0).
Proof. It should be clear that given a P2,o) scheme to compute either f5 or J

we can modify it to produce a P2,0) scheme which computes Leafiest. However,
this is impossible by Lemma 3.3. Hence, neither f5 nor f6 is P(2,o) computable. On
the other hand, since Leaftest is P(2b,0) computable and thus furnishes us with any
necessary markers, we conclude that both f5 and f6 are P(2b,O) computable.

The final result needed to complete the Venn diagram in Fig. 5 is the following
theorem.

THEOREM. P_ < P(2b,O).
Proof. The inclusion follows as a corollary to the proof of Lemma 4.5. The

two pds’s are used as counters holding the G6delized contents of the variables of
the P scheme.

The fact that the inclusion is proper follows from the fact that f6 is not P
computable. Q.E.D.

One final comment is in order here, namely that the Husearch functional of
4 is not P_ computable. This fact follows from Corollary 63 of 5].

6. Multidimensional arrays. Let us allow the use of an n-dimensional array
A, n > 1. We use the obvious interpretation that Awl, """, w,] is the same variable
as Avl, v,] if and only ifwi vi for 1, n (see [1, Def. 4.5]). The main
result of this section is that adding n-dimensional arrays in PA does not change
the power of the class.

(6.1) THFOREM. Let S be a scheme in PA, with the addition of n-dimensional
arrays. We can construct an equivalent scheme S’ in PA-

Proof. We show how to construct in PA both a locator and a P-simulator for S.
We combine these as described in the proof of Theorem 1.5 to form S’ in PA
equivalent to S.
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The locator is constructed as was the locator for a PAM scheme in showing
that PA PAM [1, Thm. 9.14. The locator is shown in (1.6), where the statements
Sa, "", S2n have to be constructed.

If the vi-autonomous behavior of S is finite, we construct Si as in [1, (9.9)3.
Note that since the behavior of S is finite, Si will reference only a finite set of
variables, and we can change all the referenced variables to simple variables.
Thus Si will clearly be in Pa.

If the vi-autonomous behavior of S is infinite, we construct Si as described
in [1, (9.11)3, and Si is a statement of P,.

Now note that, given S in Pa using multidimensional arrays, we can effectively
decide whether the v-autonomous behavior of S is finite or infinite. Suppose S
contains p statements. Begin recording the v-autonomous behavior; if p + 1
labels are recorded, there is a loop and the behavior is infinite. (This is the same
process as deciding whether a scheme in Pa has finite or infinite v-autonomous
behavior [1, Thm. 9.53 .) Hence, we can effectively construct the locator.

To construct the P-simulators, consider scheme S to be in PAe with multi-
dimensional arrays. Lemma 6.2 below shows how to construct an equivalent
scheme S’ in Pae using only one-dimensional arrays. Using Theorem 8.8 of[1] we
can construct an equivalent scheme S" in PaM. Finally we use Theorem 5.4 of [1]
to construct P-simulators in Pa for S" and hence for S. Q.E.D.

(6.2) LEMMA. Let S be a scheme in Pae which in addition uses an n-dimensional
array A, n > 1. There exists an equivalent scheme S’ in PAe which uses n +
one-dimensional arrays Bo, B1, B, in place ofA.

Proof. In addition to the arrays, S’ uses an additional variable I, whose
purpose is to indicate how many different elements A[ (in S) have been assigned
values. If in S, A[wa, "’", w,] has been assigned a value v, then in S’ for some j we
have

BI[j] Wl,...,B,[j] w,, Bo[j] v.

Let J be a new variable, and let COPY[J, w ..., w,] stand for the statement

begin J 0;

until I @ J do

begin if B[J] @ w and and B.J] @ w.
then goto FOUND;

JJ+l

end;

BI[JJ (-- Wl B,[JJ

Bo[J - OMEGA;

FOUND;

end;
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This statement performs a linear search for an index J such that.Bl[J] wl, ...,
B,[J w,. If found, then A[wl,..., w, in S is the location Bo(J) in S’. If not
found, it is added.

Now, to translate S into S’, we
1. Add the following statement to the beginning of S" I ,-- 0.
2. Transform S so that the only reference to the array A is in statements

A[w, w, v and v

where wi and v are simple variables.
3. Change each statement A[w, ..., w,] - v to

begin COPY[J, w, w,] Bo[J v end

4. Change each statement v A[wl, ..., w,] to

begin COPY[J, w1,..., w,]; v Bo[J end

Q.E.D.

Appendix, We give here the details of the proofs and constructions in some
of the lemmas and theorems. Refer to the proper lemma in the paper for discussion.

(2.2) LEMMA. P(1,n) PRgM for n >= O.
Step 1. Given S in P(,,), create S1 equivalent to S as follows. For each state-

ment PUSH(P, v) or POP(P, v) in S, generate a new label L and replace the state-
ment by

begin PUSH(P, v); L" end

or

begin POP(P, v); L" end

For each statement halt(v), generate a new label L and replace the statement by
L: halt(v). Hence, each PUSH and POP is followed by a labeled null statement,
and each halt is labeled. Let these new unique labels be called L1, L2, "’", Ll.

Step 2. Create $2 S1 as follows. Let S1 have the form

(V, V)" S1; S2;... S

and suppose it uses simple variables Va, ..., Vk. Then $2 is the scheme

(1),’’’, V)" S ;$2;... S

F(P, X)" global V1, ..’, Vk;

S1;S2;... ;S

Note that the same labels are used in both the main scheme and in F. However,
labels are local to the function in which they are used, and jumps out of functions
are not allowed.

Step 3. Create $3 6 PRgM, $3 $2. In $3, PUSH statements in $2 are replaced
by calls on F POPs and halts within F are replaced by returns; and POPs in the
main scheme are deleted. The pds P is now a parameter variable of F.

(a) Let El, ..., El be new unique markers corresponding to the labels
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L1, "., Lt introduced in Step 1. Insert just before statement S of F the sequence

if X L1 then go to L1

if X Ll then go to Lt;

(b) Change each PUSH statement begin PUSH(P, v); L end to

begin X - F(v, Li);

ifX =LlthengotoL1;

if X L then go to LI;
L end

(c) Change each statement

L" halt(V) within F to Lg’halt(L).

Note that this construction causes all halts of the scheme to result in an empty pds
at termination.

(d) Change each POP statement begin POP(P, v); L" end within F to

begin v - P; halt(Li); L end

(e) Replace each POP statement begin POP(P, v); L: end within the main
scheme by begin L: end. (Within the main scheme the pds is empty, and POP is a
null instruction.) Q.E.D.

(2.7) LEMMA. Every scheme S in PRgM has a locator S’ in P.
Proof. The locator S’ for S has the form (1.6) and we must only show how to

construct the statements $1,..., $2, described there. We outline only the con-
struction of S, which simulates the v-autonomous behavior of S where
v (true,..., true), as described by (1.7). We rely on the notation and results of
Lemma 2.6.

The first phase is to construct the v-autonomous behavior of S as described
in [1, (9.10)], with the following changes and additions:

(i) With each label L of the behavior, keep (a) the statement it labels;
(b) an indication of which function execution it occurs in (not only the function,
but which call of the function it is); (c) the current values (, M1, "., M,,_ 1) of
the global variables and (d) the current values of the local variables of the function
(or main program).

(ii) If a label is added which already occurs in the behavior for this particular
function execution (say at position j), and if the values of the global and local
variables are the same, then the behavior is infinite. Stop building the behavior
and record with this last label the position j.

(iii) After a label Li: v f( (where f is a recursive function) is added,
perform the following. Check back to see if a call of f with the same argument
values (not variables) and global values has occurred and is not yet finished (say
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at position j of the behavior). If so, the behavior is infinite. Stop building the
behavior and record with this last label the position j.

If no such previous call has occurred, then before proceeding expand the
callv .- f(... )in S as described in [1, (3.7)] This ofcourse makes the call v +-- f(...
superfluous, and it will be deleted later.

The second phase is to construct the statement $1 from the behavior con-
structed in Step 1. This behavior is of course just the partial behavior if we stopped
building the behavior via Steps 2 or 3 above. (Because of Lemma 2.6 the con-
struction must stop eventually, either with a halt or by Steps 2 or 3.)

Construct $1 from the behavior with the following changes:
(i) Replace statements Li: v .-- f( ), where f is a recursive procedure, by

null statements.
(ii) If the construction of the behavior was stopped by (ii) of phase 1, then

generate a new label L, prefix it to the jth substatement within $1 (using the j of
(ii) of phase 1), and replace the last label of the behavior by go to L.

(iii) If the construction of the behavior was stopped by (iii) of phase 1, then
generate a new label L and prefix it to the jth substatement of $1 (using the j of
(iii) of phase 1). Suppose this call at thejth position was originally v
and suppose the last labeled statement of the behavior is w ,--f(wl,’", w,).
Then generate new variables V1, "", V, and add to $1 the statements

U V1;...;Un --- V,; goto L; Q.E.D.

(2.8) LEMMA. PRgM =< PrM, Pgg --< Pg.
Proof. Suppose scheme S e PggM has function definitions for functions

F1,’", F,, and suppose that the variables used globally are V1,-’., Vm. By
suitably renaming the local variables we can make sure that V1, ..-, Vm are used
only as global variables, and hence we can assume S has the form

(2.9)

(v, ..., v)-<s>;

Fl(v,..., v)" global V1, ..., Vm; (S>; (S>

F,(v,..., v)" global V1,’", Vm; (S>;"" (S>

We give a construction which reduces by one the number of global variables.
If the construction is executed m times we arrive at an equivalent scheme in PgM.
Let us now show how to eliminate the need for V1 to be global.

Note that execution of a function Fi may change the value of V1. We must
therefore find a way of transmitting this change back to the calling function or
main program. To do this, we replace each call of Fi by two calls; one call to Fi
returns the normal value, and the second call to a new function Fi. Fi executes
exactly the way Fg does, but just returns a different value.

Step 1. For each function definition Fg in (2.9) insert a new function definition

Fi(v, v); global V1, ..., Vm; <S> <S>
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where Fi looks exactly like Fi except that each halt(w) has been replaced by halt(V1).
The resulting scheme S1 is equivalent to S, since all we have done is add function
definitions.

Step 2. Replace S1 by the following scheme $2"

(v,..., v). <s>;... <s>
Fl(v,..., v, V1)" global V2,..-, Vm;

F,(v,..., v, V1)" global V2, ..., Vm; {S);

FI(v,’", v, V1)" global V2, ..., Vm; {S);’."

F,(v, ..., v, V1)" global V2, .-., Vm; {S);

$2 executes as S1 does, except for the fact that if during execution of a function V1
is changed, this change is not transmitted back to the variable V1 local to the point
of call. The final Step 3 translates $2 into $3, where $3 is equivalent to S1 and thus S.

Step 3. Each of the functions Fi and Fi and the main program uses new
variables Vo, 2, "", m which are local to the function or main program.
Replace each call

w F,(v,..., v,, V)

by

begin V2 V2;.-. V +- Vm; (Save global values)

Vo - Fi(v, Vm, v,); (Call Fi to get normal
result into Vo)

V Fi(Vl,... Um,

(Restore global values)

(Call Fi to execute as

Fi did but return the
value of V)

w Vo; (Put result into variable w)

end
Q.E.D.
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ANALYSIS OF SCANNING POLICIES FOR REDUCING
DISK SEEK TIMES*

E. G. COFFMAN, L. A. KLIMKO, AND BARBARA RYAN"

Abstract. A number of recent studies have examined techniques for sequencing disk accesses to
minimize or reduce seek times. The principal methods proposed have been called scanning policies.
In this paper we formulate and analyze simple mathematical models of head motion in disk systems in
which two different scanning policies are implemented. Expressions for response times are derived,
and the properties they imply are discussed.

1. Introduction. Frequently, the major factor determining overall performance
in a multiprogramming or multiprocessing system is the rate at which information
can be transferred between main memory and magnetic disk units being used in
the role of auxiliary storage. As a result, considerable effort has gone into the study
of methods for increasing this transfer rate. For the most part these methods
amount to easily implemented rules for efficiently sequencing queues of requests
for disk access [1], [2], [3].

In general, the total transfer time between core memory and disks involves
three components: (i) a seek time (head positioning delay), (ii) a rotational latency
delay, and (iii) a transfer time. From the operating system’s point of view we must
normally assume that transfer rates are not under our control. However, we can
institute various techniques for reducing the first two delays. Seek time usually
dominates these two delays and forms the particular subject of this paper. Methods
of reducing rotational latency which are independent of procedures for scheduling
seeks are discussed in [1], [4].

In the next section we discuss briefly a number of methods for scheduling
disk-access requests to reduce seek times. We then describe a simple mathematical
model which is used in the subsequent section to analyze two well-known scanning
rules for servicing requests. Our principal goal is the insight into general behavior
obtainable through mathematical modeling. For simulations and approximate
methods applied to models incorporating more system detail we refer to [1], [2], [3].

2. Sequencing rules. For our purposes it is convenient to adopt the simple
model pictured in Fig. 1, in which a single head and a single disk with N tracks (or
cylinders) are shown. Without any particular concern for operating efficiency,
the first discipline normally considered is FIFO (first-in-first-out) sequencing,
simply because it is usually the easiest to implement. Specifically, requests for
information to be read or written on disk are stored in a FIFO queue; at each
decision point the head of the queue is selected and the disk head moved (if
necessary) to the addressed track. After this seek time a latency delay is incurred
while the start of the addressed record is rotating to a position under the head,
at which point the actual transfer of information commences. In general, in a
system with multiple disk units there may also be a delay (prior to the latency
delay) waiting for the availability of an input-output channel on which to transfer
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head

Request Queue

Disk

FIG. 1. Disk system model

the information requested. In the mathematical model presented later the delays
subsequent to seek times are all lumped into a single parameter.

Analyses of the FIFO system have been carried out by a number of authors,
by applying known results for tandem and parallel queues. Our interest focuses
on the more efficient rules described next. First, however, we should note for future
comparison the expected delay.incurred by seeks in the FIFO system. Suppose
there are N tracks and that the track addresses of successive requests are chosen
independently and at random from the set 1, 2, .-., N}. Then it is easily shown
that the mean number of tracks over which the head must move in servicing a
request is asymptotically N/3.

By making use of track addresses assumed known for the waiting requests
we can reduce substantially this initial delay. A possible method for improving
service is the so-called shortest-seek-time-first (SSTF) procedure [13. At each
decision point with SSTF sequencing the next request selected for service is the one
having a track address closest to the current position of the head. A little reflection
reveals an apparent drawback of the SSTF rule [13, [23 :the tracks at the inside and
outside extremities of the disk can expect poor service relative to internal tracks.
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However, relative to FIFO sequencing the above discrimination may very well
be a small price to pay for the significant increase in system capacity.

The following two methods can be used to reduce the discrimination at the
"extremity" tracks while retaining the system capacity of the SSTF rule (under
the assumption that we have a nonzero usage of all tracks). The first rule is called
the SCAN rule Ill and simply applies the SSTF criterion in one direction only"
the head scans across the tracks in a given direction, servicing requests as they are
encountered, until one of two events occurs"

(i) The last track in the given direction has been processed, or
(ii) there are no further requests ahead of the head position in the given

direction.
In both cases, the head motion is reversed and scanning is carried out in the
reverse direction (assuming a nonempty queue) until one of the above events again
Occurs.

The second method is a FIFO scanning rule that we shall term FSCAN [-31.
At each decisibn point FSCAN takes the entire queue and services the requests in a
scan whose direction is determined by the minimum distance the current head
position is from the outermost and innermost track addresses of the requests to be
serviced. Thus, the scan is preceded by a move of the disk head to the nearer of the
extreme track addresses (i.e., the nearer of the least and the maximum addresses).
Arrivals during a given scan are placed in a queue and not serviced until the next
scan’this is the principal difference between the SCAN and FSCAN rules. Clearly,
during periods of moderate to heavy loading the head will be moving back and
forth across the disk with both the SCAN and FSCAN rules. After servicing several
requests by the FSCAN rule the head is likely to be at a high address, assuming a
left-to-right scan. Thus, assuming several requests are likely to arrive during the
scan, the right-most address represented by the waiting requests will probably be the
one closest to the current head position, thus causing a subsequent right-to-left scan.

Through the analysis of a simplified mathematical model we shall see that the
response with SCAN is uniformly better (over all track addresses) than with
FSCAN, but that SCAN still involves a certain amount of discrimination against
the innermost and outermost tracks. The mathematical model is described as
follows.

The set of discrete track addresses is replaced by the interval [0, ell" i.e., the
set of real numbers in I0, ell. For simplicity, but without loss of generality, we shall
assume d and that the speed at which the head can move across the interval is a.

Since el we shall also refer to a as the time required for the disk head to move
across the address space (unit interval). We assume a Poisson input of requests at
rate 2 and we assume that the ’tracks" addressed are distributed across I0, 11
according to an arbitrary but given density function .l’(x), 0 < x < 1. Formally,
the probability that a given arrival falls in the interval (x,x + Ax)is given by
.l(x) Ax. We denote the cumulative distribution function by F(y) j’-.l’(x)dx.

Note that our assumption is consistent with the simplification that only one
request per track exists at any given time. Informally, since the probability of more
than one arrival in a small interval Ax is of order (Ax) we may regard the intervals
Ax as corresponding to tracks. Clearly this approximation worsens as the actual
number N of tracks becomes small.
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We shall assume that after the seek operation the time required to service
any request is a constant T. A more general assumption can be made here, but it is
not essential to the type of comparisons that we intend to make. Clearly, we are
lumping not only latency delays and transfer times in T, but also delays incurred
by starting and stopping the head motion and head switching times. Finally, we
assume that the head is always scanning when it is not servicing a request, and that
the direction of the scan is reversed only when the head reaches a boundary at 0 or 1.
Our assumptions are contained in the following statements"

(i) If in one crossing of the head n >= 0 requests are served, then the crossing
time is given by nT + a.

(ii) The pmf for the number (n) of arrivals in time in the interval (b, b’),
0 __< b < b’ =< 1, is given by the Poisson distribution

(1) g,(b b’lt)= {2t[F(b’)- V(b)]}"
n! exp 2t[F(b’) F(b)]}

with mean value

(2) ,(b, b’t)= 2t[F(b’)- F(b)].

3. Analysis of the SCAN rule. Our objectives are first, an expression for the
mean time for the head to move a distance x in the limit of statistical equilibrium
and second, a measure of mean waiting or response times.

For convenience we assume that the odd numbered crossings of the disk
head are left-to-right. Let Y2n+ l(X), n >= O, denote the random variable whose value
is the time taken by the head on the (2n + 1)st crossing to move left-to-right a
distance x from position 0, servicing the requests that it encounters enroute.
Similarly, for the (2n)th crossing yZn(X) denotes the random variable corresponding
to a right-to-left move of distance x from position 1. We shall use the term cycle
to designate a complete scan of the disk head from 0 to and back to 0. We next
develop an expression for the expected value of Yzn+ l(X / Ax) for a small interval
(x, x + Ax).

From our description of the SCAN rule we know that the last time prior to
the (2n + 1)st crossing that the interval (x, x + Ax) received service was while
the head was moving right-to-left through this interval on the (2n)th crossing.
Thus, given Y2n+ l(X), Y2n(1) and y2,(1 x) we have from (1) that the mean number
of requests serviced in (x, x + Ax) on the (2n + 1)st crossing is 2f(x) lkX[Yzn + l(X)
/ YZn(1) YZn(1 x)], plus a term oforder (Ax)2. Since each such request requires
T time units and since the head requires a Ax time units to cross the interval, we
have, neglecting terms of order (Ax)2,

[.+ ,(x + Ax)l.n+ l(X), .(), .( x)
(3)

Y2,+ l(X) + a Ax + 2Tf(x)Ax[Y2, + l(X)+ Y2,(1)- Y2,(1 x)].

Letting E[yi(x)] yi(x) we have on removing the conditioning in (3),

(4) 92n+ 1(X / AX)-- 2n+ 1(X) / a AX / 2Tf(x) Ax[2n + l(X) / .2n(1) 2n(1 X).

This simplification of the general model appears essential to an analysis of the SCAN rule.
Although the simplification is not so clearly essential to the FSCAN analysis, the authors have not yet
been able to analyse the general FSCAN model.
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Now consider the limit Yr(x) -= lim,_+oo Y2,+ I(X) Under the assumptions of
our problem the existence ofthis limit requires that 2 < lIT. In more general terms,
the existence of statistical equilibrium requires that the maximum service rate

lIT be greater than the arrival rate 2. Thus, taking limits in (4) we have

yr(x + Ax)= y:r(x) + a Ax + 2Tf(x) AxZ(x),

where Z(x) lim,_.oo [Y2n+ 1(X) q- Y2n(1) P2n( X)] is the average time in
equilibrium for the head to move from x to 0 and back to x.

To evaluate Z(x), we first observe that

(6) Z(x) .ixT + 2ax,

where )x is the (equilibrium) mean number of requests with track addresses between
0 and x which are served per cycle. But the mean number served per cycle must
equal the mean number arriving per cycle. Hence,

(7) )x 2g f(t) dt 2gF(x),

where (2 is the mean cycle time. Now the mean cycle time can be written as

(8) N,.T + 2a,

where c is the (equilibrium) mean number served in a cycle. Since the mean
number served in must be the mean number arriving in g’,

(9) c
Substituting (9) into (8) we find

(o) a 2a
1-2T"

Substituting (10) into (7) and then (7) into (6), we get

2a2T
(11) Z,(x) 2T

F(x) + 2ax.

Substituting (11) into (5), rearranging and taking the limit Ax -, 0 yields

y;(x) a +
2a,2T2

+ 2a2Txf(x).

Integrating and using y,(0) 0, we have

a)Z T fO(12) 9(x) ax +2F2(x) + 2a2T tf(t) at.

We can similarly find Yl(X) lim,_ 92,(x), the mean time in equilibrium for the
head to move from to x. Specifically we obtain

a’2 T2

fO(13) 2l(x) ax +-f_ 2---[1 F(1 x)] 2 + 2a2T tf(1 t)dt.

Using the results in (12) and (13) we shall now develop an expression for the mean
waiting time of requests arriving during statistical equilibrium.
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Suppose we observe the system during statistical equilibrium. Let ((x) be the
mean time for the head to move from its current position to x. Thus N(x) is the
mean (virtual) waiting time for a request which arrives to position x. To calculate
cS(x), we first condition it on the position and direction of the head at the time of
arrival. Let (r(x[v) be the mean time for the head to move to x if it is at v’ and
traveling right when the request arrives.

We have

(14)

To compute
2,() y,(v) + Yl( x),

0__<v<x__<l,

O<x<_v<_l.

2t(1)
(21) qt-

.r(1) -+-
The unconditional waiting time can be expressed as

N(x) i-(x)q + Nt(x)qt

which becomes, after substituting the results in (18)--(21),

((x)
(1) +

-2+ y()+ y()3}.

Similarly,

(15) ((x) ,.(xlv) dP,(v)

we need the stationary probability distribution P,(v) that the disk head is in the
interval (0, v) given that it is moving right. We identify P,(v) with the expected
fraction of time the head spends in the interval (0, v) in statistical equilibrium.
Accordingly,

(16) P,.(v) y,.(v)/f,.(1)

with the corresponding density function

(17) p,(v) y;(v)/2r(1).

Substituting into (15) the expressions in (14) and (17) and then carrying out the
integration, we have

1-2(18) (,(x) {.P(x)- y(x)yt(1 x)- 2(1)[yr(x 2t(1 x)] + -Yr(1)}/Yr(1).
Similarly we find

(19) ((x)= {y{(1 x)- y(x)yt(1 x)/ yt(1)[y(x)-/p(1 x); / 1/2y(1)}//p(1).

Now, q, the probability that a random request finds the head moving to the right
is the proportion of time the head spends moving to the right. Hence,

(1)
(20) qr

.r(1) -+- y/(1)"
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Using expressions (12) and (13) to eliminate the functions .r and .t we obtain after
tedious but routine manipulations

(22) (x)
2a
2T {x 1/2)(1 2T) + 2T(F(x)- 1/2)]2 + 1/4}.

This is the basic result we have been seeking for the SCAN rule. Before proceeding
to the analysis of the FSCAN rule we discuss the meaning of (22).

First, it will be convenient to rewrite (22) as follows"

a 2a[h(x)2

(23) N(x)=2(I_2T) + 1-2T’

where

(24) h(x) (x 1/2)(1 2 T) + 2 T(F(x) 1/2).
Since 0 __< 2T < 1, we see that h(x) is a convex combination (weighted average)
of the two functions x 1/2 and F(x)- 1/2. Both of these functions increase from

f(x)

/

X

fo(x)

fn (x)

f (x)

0 .5

FIG. 2. Examples for symmetric densities
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f(x)

2

X

g(x)

2

t x
.5

FIG. 3. An asymmetric density

-1/2 to 1/2 as x varies from 0 to 1, and in fact h(x)is strictly increasing from -1/2 to 1/2
on this range. Thus h(x) has a unique zero, say at xo,in the interval (0, 1). Therefore,
it is seen that for any density f(x), N(0) N(1) a/(1 2T); that N(x) is strictly
decreasing for 0 __< x =< Xo, and strictly increasing for Xo =< x __< 1; and that the
minimum value of N(x) is N(Xo) a/J2(1 2T)]. Further, if f(x) is symmetric
about x 1/2, then Xo 1/2 and N(x) is also symmetric about x 1/2. (See Fig. 2,
discussed below.)

It is interesting to compare the waiting time N(x) for any density f(x)
symmetric about x 1/2 with the waiting time No(X) for fo(x) ;i.e., for a uniform
distribution of track addresses. In the latter case Fo(x x, so that (23) becomes

a 2a(x 1/2)2
N(x) 2(1 -2T) + -2T

If the distribution function F(x) associated with f(x) satisfies F(x)<= x for
0 =< x _< 1/2, i.e., requests for service tend to crowd toward the center of the disk,
it is easily seen from (24) that N(x) => No(X), i.e., discrimination at the extremities
of the disk will tend to increase. On the other hand, if F(x) >= x for 0 < x _< 1/2,
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i.e., requests tend to crowd toward the extremities of the disk, we can see from (24)
that ((x) < No(X), i.e., discrimination at the extremities of the disk will tend to
decrease. These properties are shown in Fig. 2 for examples concentrating addresses
in the center (fl(x)), uniformly (fo(x)), and at the extremities (f2(x)) of the disk.
(In Fig. 3 is shown c(x) for an asymmetric density f(x)= 2x.) This somewhat
counter-intuitive result can be understood if we realize that when requests for
service tend to crowd toward the center of the disk, the head will rarely visit the
extremities, and thus an arrival there will surely have a long wait, whereas when
requests for service tend to crowd near the extremities, the head will spend much
time there, and an arrival near one end has a good chance of experiencing a very
short wait.

Formula (24) shows quite nicely the effect of loading on ((x). Under heavy
loading (2T near 1), prominence is given to the term F(x) 1/2, while under light
loading, F(x) 1/2 has little effect, a result which is to be expected. It is also seen
from (23) that cS(x) is directly proportional to a, the time it takes the head to move
across the disk without servicing any requests, another result which is to be expected.

4. Analysis of the FSCAN rule. To analyze the FSCAN system, we first
use a Markov chain argument to find the (equilibrium) first two moments (he, h2)
of the number of requests serviced in a crossing. Let X, be the number of requests
serviced in the nth crossing. Let {qj} denote the stationary probability distribution
and let

qij Pr {X.+ jIX, i}
denote the one-step transition probabilities. It is easily verified that the Markov
chain {X,} is homogeneous; i.e., the qij are independent of the time parameter n.

Moreover, for all >_ 0 and j >= O, qij is simply the probability ofj Poisson arrivals
in ti iT / a. Thus

(’ti)
(25) qij --j-V e

From the equation defining the stationary distribution

qj qijqi, j O, 1,2,...
i=0

and the generating function

Q(z) , qjz
j=O

we obtain

Q(z) Z qi Z qiJzj"
i=0 j=0

Substituting (25) into the previous expression and simplifying we get

i=0
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Substituting iT + a we arrive at

(26) Q(z)

From (26) we can find the moments by differentiation. Specifically, we have the
first two moments

2a
(27) c 2T’

-2(28) nc (2T)z

Note from (27) that the mean cycle time 2/2 is the same as that given b (10);
this we should expect on the basis of the same arguments given in support of the
value in (10).

Now suppose we observe the system at a random point in equilibrium.
As in SCAN, let (x) be the mean (virtual) waiting time for a request which arrives
at x. Thus, (x) is the sum of the mean time for the head to complete the present
crossing plus the mean time the head spends in the next crossing (both traveling
and processing requests in front of x) before position x is reached.

Then
(29) (x) Z p..(x),

n=0

where p. is the stationary probability that a random arrival finds the system
executing a crossing that serves n requests, and where .(x) is the mean (virtual)
waiting time if the random arrival finds the system executing a crossing that
services n requests. Since the direction of head motion is equally probably left or
right, and since the present crossing is of length t. nT + a, we have

N.(x) =- + 1/2 2Tt. f(t) dt + ax +1/2 2Tt. f(t) dt + a(1 x)

or

(30)

__
a

n(X) (1 + T) -which we note is independent of x and f(x). By means of the arguments used to
justify (16) we can establish the following relation between p. and q.

nT+a
(31) p.

T+ a

In particular, in a large number of crossings, q. is approximately that fraction of
crossings which serves n requests. Since each such crossing requires exactly tn time
units we arrive at t.qn/.= o t.qn as the fraction of time spent in crossings servicing
n requests. On substituting for tn we get (31). Substituting (30) and (31) into (29)
we get

a l+2T
(x) - + 2(hcT + a).o tz"q"

a l+2T ’-’o TZnZqn + 2aTnq. + aZqn].
2(T + a)
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Using the moments given in (27) and (28) we find on substitution and simplification

a + 2T2/2(32) ((x)= -).T
This is the expression to compare with (24) for the SCAN system. In particular,
as can be seen from (24), N(x) =< N(1) a/(1 2T) for all x and f(x). Therefore,
the FSCAN result always exceeds the SCAN result by at least 2T2/2(1 2T).
Since the performance difference increases rapidly with the loading factor 2T
(0 < 2T < 1), we have a strong argument for the use of the SCAN policy.

5. Final remarks. By means of an idealized mathematical model of disk seek
operations we have obtained precise results for the mean response times arising
with the SCAN and FSCAN servicing rules. The principal conclusions are that
SCAN produces uniformly better response times than FSCAN, but that SCAN
discriminates against requests for addresses at the extremities of the address space.
This discrimination was found to be less for those address distributions concentrat-
ing seeks at the extreme addresses.

The most stringent assumption made in modeling head motion has been the
requirement that the head can not reverse direction until it encounters a boundary.

is not easy to see what net effect this simplification has on the relative performance
of SCAN and FSCAN however, the simplification becomes less unrealistic as the
loading increases or when address distributions are assumed which concentrate
disk operations at the extreme addresses. In any case, the removal of the simplifica-
tion makes the resulting model far less tractable, and a satisfactory approach has
not yet been found.

It is worth mentioning that the NSCAN rule discussed in [3] is a generalization
of the FSCAN rule that we have examined. NSCAN operates as FSCAN except
that a maximum of N requests can be served in a crossing. Two specific models
can be assumed: (a) there is a bounded queueing facility that can hold at most N
requests, or (b) there is no bound on the number of requests waiting, but at most N
can be serviced in a crossing. In either case, in the limit N -, c we have the
FSCAN rule. In this paper an analysis of NSCAN rules was not thought to be of
significant interest since their performance must compare less favorably with
SCAN than that of FSCAN. However, extensions of the FSCAN analysis to these
rules would appear to be routine, although more elaborate.
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ON LANGUAGES ACCEPTED IN POLYNOMIAL TIME*

RONALD V. BOOK-
Abstract. The family NP (P) of languages accepted by nondeterministic (deterministic) Turing

machines operating in polynomial time is distinct from many well-known families of languages defined
by tape-bounded or time-bounded Turing machines. In particular, it is shown that NP (P) is not equal
to the family of context-sensitive languages, the family of languages accepted by deterministic linear
bounded automata, or the family of languages accepted by deterministic Turing machines operating
within exponential time.

Key words. Automata-based complexity, complexity classes of formal languages, polynomial
time, time-bounded machines, tape-bounded machines.

Introduction. In automata-based complexity much effort has been expended
in attempting to answer questions regarding time-tape trade-offs, deterministic
simulation of nondeterministic machines, etc. Recently nondeterministic Turing
machines operating in polynomial time have been studied in order to classify
the "relative complexity" of certain (nonautomata theoretic) problems [6], [12].
The relationship between the family NP (P) of languages accepted by nondeter-
ministic (deterministic) Turing machines operating in polynomial time and other
complexity classes of languages is of interest in order to further classify these
problems.

It has been shown [6] that any language in NP is "polynomially reducible"
to various languages accepted by deterministic linear bounded automata and
hence by deterministic Turing machines operating in exponential time. Here we
compare P and NP to many well-known families of languages defined by tape-
bounded or time-bounded Turing machines and show that these families are
distinct.

In 1 we compare P and NP with certain tape-bounded classes and in 2
with certain time-bounded classes. In 3 we give quite different proofs of some
results from 1 and 2, and in 4 we provide an outline of another approach to
these results.

1. We begin by defining the families of languages under investigation. The
functionsf used to bound the amount of time or tape used in a Turing machine’s
computation are such that for all x, y >__ O, f(x) >= x and f(x) + f(y) <= f(x + y).
Such functions are nondecreasing. Further, most functions used are "self-
computable" in the sense that there is a Turing machine M which upon input w
runs for precisely f(lw[) steps and halts, and a machine M2 which upon input w
marks precisely f(lw[) consecutive tape squares and halts. (See [2].)

DzvIy:oy. Letfbe a bounding function. For a Turing acceptor M, L(M) is
a set of strings accepted by M.
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For a string w, Iwl is the length of w.
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(i) A multitape Turing acceptor M operates within time boundfif for each
input string w accepted by M, every accepting computation of M on w has no
more than max (Iwl ,f(Iw[)) steps.

(ii) Define NTIME(f)= {L(M)]M is a nondeterministic multitape Turing
acceptor which operates within time bound f} and DTIME(f) {L(M)IM is a
deterministic multitape Turing acceptor which operates within time boundf}.

(iii) A multitape Turing acceptor M operates within tape boundfif for each
input string w accepted by M, every accepting computation of M on w visits no
more than max (Iwl ,f(Iwl)) tape squares on any one of its storage tapes.

(iv) Define NTAPE(f)= {L(M)[M is a nondeterministic Turing acceptor
which operates within tape boundf} and DTAPE(f) {L(M)[M is a deterministic
Turing acceptor which operates within tape boundf).

The specific families oflanguages which we study in this paper can be formally
defined using the above notation.

DEFINITION. The family of languages accepted by nondeterministic Turing
machines which operate in polynomial time is NP U%1 NTIME(xk) The
family of languages accepted by deterministic Turing machines which operate in
polynomial time is P I,J o= DTIME(xk).

In [6] the family P is referred to as &a, and the family NP as -.
There are several other families of languages to which we frequently refer.
DEFINITION. Let be the identity function, i(x) x.
(i) The family of context-sensitive languages is the family CS NTAPE(i).
(ii) The family of languages accepted by deterministic linear bounded

automata is DLBA DTAPE(i).
(iii) The family of languages accepted by deterministic Turing machines

which operate in polynomial storage is

-= U DTAPE(xk).
k=l

(iv) The family of quasi-realtime languages is the family Q NTIME(i) [1].
The family DLBA is the family of languages whose characteristic functions

are in O
xv2 (where O

x2 is the subclass of primitive recursive functions defined by
Grzegorczyk). Sometimes this family is referred to as the family of deterministic
O
2 relations or 2,. Then the family CS is referred to as the family of nondeter-
ministic O

x2 relations.
Recall that for any function f, NTAPE(f)

_
DTAPE(f2) [13]; thus,

" 13 NTAPE(xk).
k=l

Further, for any real numbers, 1 =< r < s, DTAPE(xr) N DTAPE(xs) [14]. Hence,
there is no real number such that - DTAPE(xt) or - NTAPE(xt). These
facts are helpful in establishing our results comparing P and NP to various
families defined by tape-bounded machines.

THEOREM 1. If there exists a real number r >= 1 such that DTAPE(xr)
_

P,
then " P NP. Similarly, if there exists a real number r >__ 1 such that
DTAPE(x)

_
NP, then NP.
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Proof We give the proof for the first part, the proof for the second part being
identical.

First, note that P NP
_
-, since a machine can use no more tape than

it does time. Second, suppose r >= 1 is such that DTAPE(xr)
_

P. Without loss
of generality, assume that r is rational, say r p/q, where p >__ q >= 1 are integers.
To show that- _

P it is sufficient to show that DTAPE(xs) P for s 2qr 2p.
Let M be a deterministic Turing machine which operates within tape bound

xS.LetL1 L(M).IfEisafinitealphabetsuchthatL
_

E*, let c be a new symbol,
c E. Let L2 (wcmJw . L1, ]wcmI ]WJS}. Since M operates within tape bound x,
it is clear that one can construct a deterministic linear bounded automaton M2
from M such that L(M2)--L2. Thus, L2 E DLBA_ DTAPE(xr) P. But if

L2 P, then L1 P since the difference (with respect to time) between recognizing
L and L2 is simply the computation of a polynomial. Hence, DTAPE(x)

_
P.

Since for any real number r >= 1, DTAPE(x)
_
NTAPE(x), the result of

Theorem 1 will hold if NTAPE(x) is substituted for DTAPE(x").
THEOREM 2. There is no pair (r, s) of real numbers, 1 <= r <= s, such that

DTAPE(xr)
_
P
_
DTAPE(x)orNTAPE(x)

_
P
_

NTAPE(xs).Similarly, there
is no pair(r,s)ofreal numbers, 1 <_ r <_ s, such that DTAPE(x) NP

_
DTAPE(x)

or NTAPE(x")
_
NP

_
NTAPE(xS).

Proof If DTAPE(xr)
_

P, then by Theorem 1, " P. Hence, if
P
_

DTAPE(xS), then - DTAPE(x). But as noted above DTAPE(x) -.
Thus, either DTAPE(xr) 5 P or P DTAPE(x). The proof for NP is identical.
Since DTAPE(x")

_
NTAPE(xr) and NTAPE(x) __. DTAPE(x2), if NTAPE(.)

is substituted for DTAPE(..)throughout, then the results still hold.
COROLLARY. For any real number r >= 1,
(i) P - DTAPE(x’),

(ii) P - NTAPE(x’),
(iii) NP - DTAPE(xr),
(iv) NP - NTAPE(x’).

In particular, P - DLBA, P - CS, NP 4= DLBA, and NP 4: CS.
It is not known whether DLBA

_
P or DLBA

_
NP. From Theorem 2,

we see that if for some real number s, P
_
DTAPE(xs) or NP

_
DTAPE(x), then

there is no real number r >__ 1 such that DTAPE(x’)
__
P or DTAPE(xr) __. NP

(or NTAPE(x’)
_
P or NTAPE(x’)

_
NP).

2. We turn to comparing P and NP with families defined by time-bounded
machines.

The first result is analogous to Theorem 1.
THEOREM 3. If there exists a real number p > 1 such that DTIME(px)

_
NP,

then
I,.J DTIME(kx) NP - I,J DTIME(2).
k=l j=l

COROLLARY. There is no real number p > 1 such that DTIME(px) NP.
Further, U ff=x DTIME(kx) - NP.

Note that I.Jff= DTIME(kx) is the family of languages accepted by deter-
ministic Turing machines operating in exponential time. In [5] it is shown that
U ’= DTIME(kx) is precisely the family of languages accepted by (deterministic
or nondeterministic) auxiliary pushdown machines which operate within tape
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bound i(x)= x. Thus, CS_ U ff=l DTIME(kX). It is not known whether
NP

_
U ff_-i DTIME(kX).

To obtain Theorem 3 we establish two lemmas. In both cases the proof is
similar to that of Theorem 1.

LEMMA 1. If there exists a real number p > 1 such that DTIME(px)
_
NP,

then DTIME((p2)x)
_
NP.

Proof. Suppose such a p exists. Let L DTIME((p2)X). Let M be a deter-
ministic Turing machine such that L(M1) L andM operates within time bound
(p2). Let E be a finite alphabet such that L1 - E* and let c be a new symbol,
cE.

If L2 {wclWllw L1}, then one can construct a deterministic Turing machine
ME from M such that L(M2)= L2 and such that the running time of ME is
bounded by (pE)lwl. Since [wclwl 21wl, this means that ME operates within time
bound p. Hence, L2 L(M2) DTIME(p). Since DTIME(px)

_
NP, this means

that L2 NP. But if L2 NP, then L1 NP since the difference (with respect to
time) between recognizing L and L2 is simply the computation of a polynomial.
Hence, DTIME((p2)x)

_
NP.

LEMMA 2. If U o= DTIME(k)
_
NP, then U o= DTIME(2x) c__ NP.

Proof If L1 e Uf= DTIME(2), then there is a deterministic Turing machine
M and a constantj such that L(M) L and M1 operates within time bound 2.
Let E be a finite alphabet such that L c_ E* and let c be a new symbol, c E.

If
L {wcmlw e L, Iwcml

then one can construct a deterministic Turing machine M such that L(M2) Lz
and such that the running time of Mz is bounded by 2Iwl. Since Iwc"l Iw], this
means that M operates within time bound 2L Hence,

L L(M2) e DTIME(2)
_

U DTIME(U).
k=l

Since U o= DTIME(k)
_
NP, this means that L2 ff NP. But if L2 NP, then

L e NP since the difference between recognizing L and L is simply the computa-
tion of a polynomial. Hence U=1 DTIME(2)

_
NP.

Proof of Theorem 3. Suppose there exists a real number p > 1 such that
DTIME(p) c_ NP. By use ofLemma 1, for any integer q > 1, DTIME((pq))

_
NP.

Thus,

U DTIME(U)
_
NP.

k=l

By Lemma 2, this means that U [= DTIME(2) - NP. As noted in 1, NP c__ -.
It is clear that - _

U U DTIMg(k).
k=lj=l

But

U U DTIME(ks) U DTIME(2XS),
k=lj=l j=l
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so we have

From [9], we have

NP -= O DTIME(2XJ).

U DTIME(kx) U DTIME(2XJ).
k=l j=l

Our other result with respect to time is a statement of two necessary and
sufficient conditions for P and NP to be the same.

THEOREM 4. Thefollowing are equivalent"
(a) P NP;
(b) P is closed uder no,erasing homomorphic mappings;
(c) Q

_
e.

Proof It is clear that the family NP is closed under nonerasing homomorphic
mappings so that (a) implies (b). In Ill it is shown that L Q if and only if there
exist L2DTIME(i)c P and a nonerasing homomorphism h such that
L {h(w)lw L2}. Thus, (b) implies (c).

To see that (c) implies (a), again we use an argument similar to the proof of
Theorem 1. If L NP Uo= NTIME(x), then there exist an integer k >_ 1 and
a nondeterministic Turing machine M such that L(M1)- L and M operates
within time bound xk. Let Z be a finite alphabet such that L

_
2" and let c be a

new symbol, c Z. Let
L2 {wcmIw L, Iwcm] Iwl).

Since M operates within time bound xk, one can construct a machine M2 from
M such that L(M2)= L2 and M2 operates within time bound i(x)= x. Thus,
L2 Q so Q

_
P implies L2 P. But if L2 P, then clearly L P. Hence, NP

_
P.

Since P
_
NP, we have NP P.

Those familiar with formal language theory may note that condition (b) is
equivalent to the assertion that P is an abstract family of languages (AFL).

3. Now we give a totally different proof of part of the corollary to Theorem 2
and the corollary to Theorem 3.

PROPOSITION 1. For any rational number r _>_ 1, NP :/: DTAPE(xr), NP
:/: NTAPE(xr), and NP :/: U o= DTIME(kXr)

Proof By results in [2], [3], DTAPE(xr), NTAPE(x’), and U o= DTIME(Ur)
are principal AFLs.2 We show that NP is not a principal AFL, thus obtaining the
result.

In [7] it is shown that for any real numbers r, s, if 1 <_ r < s, then NTIME(xr)
NTIME(x). Hence NTIME(x), NTIME(x2), NTIME(x3) forms an infinite

heirarchy of families of languages. By results in [2], each NTIME(xk) is a principal
AFL. Thus by results in [8], NP Uo= NTIME(xk) is not a principal AFL.

An abstract family of languages (AFL) is a family of languages closed under the following opera-
tions" union, concatenation, Kleene +, intersection with regular sets, nonerasing homomorphic
mappings (a homomorphism h :Z* A* is nonerasing if h(w) e implies w e), and inverse homo-
morphic mappings. A family of languages is a principal AFL if it is the smallest AFL containing some
given language [8].
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COROLLARY. NP U__ NTIME(kX).
Proof. By results in [2], U o__ NTIME(kx) is a principal AFL. As shown above,

NP is not a principal AFL so NP U o__ NTIME(k).
The family U-- NTIME(kx) of languages accepted by nondeterministic

Turing machines operating in exponential time is the class of spectra of formulas
of first order logic with equality [11].

Results in [2], [3], [8] show that NP cannot be the same as many families
which have been studied in automata and formal language theory since NP is
not a principal AFL.

4. The results established in 1-3 were discovered by examining the applica-
tion of "bounded erasing operators" to the families CS, DLBA, P, NP, etc.
In particular, we have shown that NP is closed under "polynomial erasing" where
neither CS nor DLBA has this property, the closure of either CS or DLBA under
polynomial erasing being -. In this section we define some of these notions and
rephrase some of the results of [2], [4] in terms of these families. It is hoped that
these techniques are applicable to other questions concerning complexity classes
of languages, and are helpful in suggesting possible results to others.

We begin by defining the notion of a bounded erasing operator [2].
DEFINITION. If h" E* - A* is a homomorphism, L

_
E*, and f is a function

such that for some k > 0 and all w L, [w[ _< kf(lh(w)[), then h is j-bounded on L.
For any family &a of languages3 and any functionf, the image of underf-bounded
erasing is Hy[a] {h(L)[L and h is a homomorphism which is f-bounded
on L}.

The first use of the bounded erasing operators is shown in the following
"representation" results from [2].

PROPOSITION 2. For anyfunction f,

NTIME(f) Hy[Q], NTAPE(f)= Hy[CS], and DTAPE(f)= Hy[DLBA].

Hence, NTIME(f)
_
DTAPE(f).

In [4] the composition of operators H.r and Hg is studied. Sufficient conditions
on f, g, and 5e such that Hg[H[,]] Hfog[p] (where (fo g)(x)= f(g(x))) are
established. Applied to the families of languages and bounding functions studied
here, the following results become important.

PROPOSITION 3. For rational numbers r, s >= 1, iff(x)= x and g(x)= x are
boundingfunctions, then

(i) ng[U.[Q]] Hg[NTIME(f)] NTIME(fo g);
(ii) Hg[H[CS]] Hg[NTAPE(f)] NTAPE(fo g);

(iii) Hg[H[DLBA]] Hg[DTAPE(f)] DTAPE(fo g).
A family o is closed under "polynomial erasing" if for any real number

r > 1, iff(x) x, then H.[E]
_

5e. As shown in [4], there is no real number
s >_ 1 such that NTAPE(x) or DTAPE(x) is closed under H., i.e., ,o H[q].
On the other hand, the proof of Theorem 1 shows that NP is closed under poly-
nomial erasing. The proof of Theorem 3 shows that (J= DTIME(kx) is not
closed under polynomial erasing.

We assume that (i) if L .’, then there is a finite alphabet such that L
_
*, and (ii) there exists

L . such that L .
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In [4] the results on bounded erasing are used to show the following result
announced in [10]" for any pair of real numbers (r,s) such that 1 =< r < s,
NTAPE(xr) NTAPE(xS).

The results in 2 show that NP is the smallest AFL which is closed under
polynomial erasing and contains P. IfNP is simply the smallest AFL containing P,
then one can extend results in 2 and 3 to show that NP U if- DTIME(kX)

The results stated in this section are "representation" and "translation"
results. In particular, Proposition 3 is similar to the translation results of [3],
[4], [7], [I0], [13].

The bounded-erasing operators are "algebraic" and not "measure dependent."
It would be interesting to know whether the type of "translation" results obtained
here can be found in abstract complexity theory.

Acknowledgment. It is a pleasure to thank Stephen Cook for his criticism of
a previous version of this paper.
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A NOTE ON THE INTERSECTION OF COMPLEXITY CLASSES OF
FUNCTIONS*
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Abstract. The classes of computable functions defined by a bound on the computation time are
shown not to be closed under infinite descending intersection.

Key words. Blum theory, computational complexity theory, complexity classes, computable
functions.

Of great interest recently has been an investigation of the properties of
complexity classes as a way of gaining insight into the computable functions.
These classes have been shown to be closed under infinite increasing union [3].
This note answers negatively the question of closure under infinite decreasing
intersection of complexity classes of functions.

Let 2i) be a standard indexing of the partial recursive functions [5]. {i} is
said to be a Blum measure of complexity if i(x) is defined if and only if bi(x) is
defined and the predicate i(x) =< y is decidable for all i, x, y. We shall fix bi and
i for the remainder of this paper. We say t(x) <= s(x) almost everywhere (a.e.) if
t(x) <= s(x) for all but a finite number of x. We say t(x) <= s(x) infinitely often (i.o.)
if it is not the case that s(x) < t(x) a.e.

F(t) {i; b is total and dPi(x)<_ t(x) a.e.},
if(t) {4) ;4 is total and i(x) < t(x) a.e.}.

We say (following [1]) a set {gl} is a measured set if gi(x) _< y is decidable for all
i, x and y (for example {i}). Finally [3J if g is a total recursive function we say h
is g-honest if for some b h we have k(x) =< g(x, qSk(x)) a.e.

An easy result of McCreight and Meyer [3] is that any measured set is g-honest
for some monotone total recursive g.

We shall need a result pertaining to the Blum speed-up theorem [1] which is
an easy consequence of a theorem proven by Meyer and Fischer [2].

THEOREM 1, [2]. Let 2xyh(x, y) be any total recursive function. Then there is
a total recursivefunctionfand a sequence Po, P 1, such that

(i) for all i, pi(x) >= h(x, Pi + l(x)) a.e.
(ii) for all i, there is a j such that dpj fand dpj(x) <= pi(x) a.e. and
(iii) if c])j f, then there is an such that pi(x) < dpj(x) a.e.
We also need another result of McCreight and Meyer [3]. This says that large

output takes a long time to write.
TI-IOIF.M [3]. There exists a total monotone recursive f’ such that for all

i, d?i(x) <= f’(x, dPi(x)) a.e.
We are now in a position to prove our result. This theorem says that the

classes of functions o are not closed under infinite descending classes ofprograms.
Robertson [4] has proved the same theorem for the F.

* Received by the editors August 5, 1971.

" Department of Computer Science and Experimental Statistics, University of Rhode Island,
Kingston, Rhode Island 02881. This result is taken from the author’s doctoral dissertation written
at Purdue University under the direction of Paul Young. This work was supported by the National
Science Foundation under Grants GP 6120 and GJ 27127.
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THEOREM. There exists a sequence of total functions P0, P l, such that for
all i, pi(x) >= Pi+ l(x) a.e. and such that there does not exist a function with
if(t) f-) (Pi).

(I) is a measured set, it is g-honest for some total monotone g.Proof. Since { i} i= o
XAlso we have dpi(x) <= f’(x, Oi(x)) a.e. for all i. Let h(x, y) max (f y), g(x, y)).

Then by condition (ii) of Theorem 1 (due to Meyer-Fischer) there is a sequence
Po, Pl"’" and a function f such that for all there is a j such that tk f and
Oi(x) pi(x) a.e. Thusfe f’li (Pi).

Now suppose for the sake of contradiction that for some we have if(t)
Vli(Pi). Then we must have fe,(t). Thus there is a q5i f such that

Oi(x) t(x) a.e. By conditions (i), (ii), and (iii) of Theorem 1 there are i, k, and u
such that q5k fand

h(x, p,(x)) < h(x, k(X)) <-- h(x, Pi+ (x)) Pi(X) < (I)i(x) a.e.

Since k is a recursive function, we have k b, for some b,. Since b, is g-honest,
we have

O,(x) <_ g(x, ,(x)) h(x, dp,(x)) h(x, k(X)) < (X) <-- t(X) a.e.

We thus have q, e ,(t). By our choice off’ we havef’(x, Ore(x)) dPm(X) (k(X),
where q5 is any way of computing (I)k. We thus have

h(x, m(X)) f(x, (X)) Ok(X > p,(x) h(x, p,+ (x)) a.e.

Thus by the monotonicity of h we have Ore(X) > P,+ x(X), where b is any way of
computing b.. Thus . q i,(pi). But b. e -(t) i’(pi), a contradiction.
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ANALYSIS AND SYNTHESIS OF SORTING ALGORITHMS*

C. L. LIU?

Atract. The problem of analyzing and synthesizing sorting algorithms is studied. That is, given
a sorting algorithm we want to investigate how it works in a step-by-step manner and consequently
to assert that it indeed arranges the objects according to a certain ordering relationship, and con-
versely, given an ordering relationship according to which a set of objects are to be arranged, we want
to determine an algorithm that will yield the desired result.

Key words. Sorting algorithms, sorting networks

1. Introduction. By sorting a set of objects 1, we mean to arrange them in such
a way that a certain ordering relationship between them is satisfied. An algorithm
leading to a correct arrangement of these objects is called a sorting algorithm.
With the possible exception of some trivial degenerate cases, all sorting algorithms
can be decomposed into steps (phases). In this paper, we study the problem of
analyzing and synthesizing sorting algorithms. That is, given a sorting algorithm
we want to investigate how it works in a step-by-step manner and consequently
to assert that it indeed arranges the objects according to a certain ordering rela-
tionship, and conversely, given an ordering relationship according to which a
set of objects are to be arranged, we want to determine an algorithm (more
specifically, a sequence of steps) that will yield the desired result. Some previous
work on this subject is that of Batcher [1], Bose and Nelson [2], Gale and Karp [3],
Knuth [4], Levy and Paull [5].

We introduce first some notation. Let A be a finite set which is a set of locations.
Let Z denote the set of integers. Let b be a function mapping A into Z. For a A,
b(a) is the content of location a. We call the ordered pair (A, 4) a configuration. Let
n be a one-to-one function mapping A onto A which defines a permutation of the
contents of the locations. For a A, re(a) is the location to which the content of a,
qS(a), will be moved. Let b be a function from A into Z such that

q(a) 4(-(a)).
We say that (A, b) is a configuration induced from (A, b) by n.

Let P be a partial ordering relation over A. A configuration (A, b) is said to
be consistent with P if alPa2 implies that b(al) =< b(a2) for all al, a2 in A. By
sorting a configuration (A, ) with respect to P, we mean to determine a permuta-
tion n on A such that (A, 4) is consistent with P. It is not difficult to see that for
a given configuration (A, b) and a partial ordering relation P the permutation n
and thus the configuration (A, b) are not necessarily unique. We shall use (A,
to denote a configuration induced from (A, q) by some n such that (A, b) is

* Received by the editors January 11, 1972.- Department of Computer Science, University of Illinois, Urbana, Illinois 61801. This work was
supported in part by Project MAC, an M.I.T. research program sponsored by the Advanced Research
Projects Agency, Department of Defense, Office ofNaval Research, under Contract N00014-70-A-0362-
0001.

We limit our discussion to the sorting of integers (or any set of objects over which there is a
natural linear ordering).
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consistent with P. We say that (A, b,) is a configuration induced from (A,
by P.

A partial ordering relation C over A is called a shift if (i) alCa2 and al Ca3
implies that either2 a2Ca3 or a3Ca2 and (ii) a2Cal and a3Cal implies that either2

a2Ca3 or a3Ca2 for any al, a2, a3 in A. A maximal sequence of locations
all,a12, ..., aim such that alCalk,alCal,k+l,akCal,k+2,... ,akCalm for
k 1, 2,..., m, is called a chain of the shift C. Thus, corresponding to a shift
the locations in A are partitioned into chains. For a given configuration (A, q)
and a shift C over A, a configuration consistent with C can readily be obtained
by rearranging the integers in the locations in each chain into ascending order
according to C. As a matter of fact, we shall adopt the convention that for a given
configuration (A, b) and a shift C over A, the configuration (A, bc) is the one
induced from (A, b) by the permutation that permutes the contents of the loca-
tions in each chain. A sequence of shifts over A, (C, C_ 1, "’", C2, C1), is said
to be a sorting algorithm for P if for any arbitrary b, the configuration3

(A, dPcc_ ,...cc,) is consistent with P. A sorting algorithm described by a sequence
of shifts is nonadaptive in the sense that each step in the algorithm is predeter-
mined and is independent of the outcome of previous steps. (We look at each shift
in the sequence as a step. It is conceivable that an adaptive procedure is followed
to rearrange the contents of the locations in the chains of a shift.)

The physical significance of these abstract notions should now become
obvious: Given a set of integers stored in a set of locations as described by the
configuration (A, b), we can rearrange the integers so that the partial ordering
relation P will be satisfied by following a sorting algorithm (C,, C,_
That is, we rearrange the integers stored in A according to C, we then rearrange
these (rearranged) integers according to C_1, and so on. Eventually, after we
rearrange the integers according to C1, we will have the integers sorted according
to P.

2. An analysis result. Let (A, q) be a given configuration. Let P be a partial
ordering relation and C be a shift over A. Suppose that we have sorted the integers
in A so that the configuration (A, e) is consistent with P. We want to know the
partial ordering relation that the new configuration, (A, tkpc), will be consistent
with if the integers in each chain of C are rearranged according to C.

For a partial ordering relation P over A, a location al is said to precede a
location a2 in P if alPa2. We also say that the location a2 is preceded by the loca-
tion al. Given a shift C over A, we define the rank of a location to be the number
of locations preceding it in C. Clearly, the rank of each location is a positive
integer. Moreover, in a chain ofm locations, there is a location of rank 1, a location
of rank 2,..., and a location of rank m.

Let P be a partial ordering relation and C be a shift over A. We define a
binary relation Q over A as follows: Let al be a location in a chain A1 and a2 be
a location in a chain A2 of the shift C. Let the rank of al be and the rank of a2

Since C is a partial ordering relation, it is clear that this is an "exclusive or" relationship for
a :/: a

We write dPckck_, to mean (dPck)c.... and dPcc_ ,...c2c, to mean ((((dpc,)c_ 1)"" )c2)c,.
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be j. Then al Qa2 if and only if every j locations in A2 are preceded, in the partial
ordering relation P, by or more locations in A1. The binary relation Q is said
to be a composition of the partial ordering relation P and the shift C, which will
be denoted by P (R) C. As one would suspect at this point, the configuration
(A, 4),c) is consistent with the binary relation Q. We shall show this indeed is the
case. We should, however, establish first that Q is a partial ordering relation
over A.

LEMMA 1. Let a and a2 be two locations in the same chain of C. Then alQa2
if and only if a Ca2

Proof. Let al be a location of rank and a2 be a location of rank j in a chain
A1 of C.

Suppose that al Ca2. That is, __< j. Since every j locations in A1 are preceded,
in the partial ordering relation P, by at least j locations (themselves) in A1, we
have a1Qa2

Suppose that alQa2. We define the height of a location a, in A1 to be 1 if
there is no av in A1, au :/: av, such that aPa,. Because P is a partial ordering
relation, and because A is a finite set of locations, there is one or more locations
in A1 whose height is 1. Recursively, the height of a location a, in A1 is said to be
n if there is a location a in A1 whose height is n 1 such that aPa, and if there
is no location aw in A1 whose height is n or higher such that awPa,. Because P
is a partial ordering relation, the height of a location is a uniquely determined
positive integer. For a given integer j, let us select j locations from A1 by selecting
locations of lowest possible heights. That is, we shall not include locations whose
heights are n until locations whose heights are n 1 or lower have all been in-
cluded starting with locations of height 1. Clearly such a set of j locations are
preceded only by j locations (themselves) in A 1. Therefore, alQa2 implies that

=< j. That is, a1Qa2 implies that alCa2. [-]

According to Lemma 1, Q
_

C. Intuitively, it is clear that this is necessarily
the case because the configuration (A, 4ec) must be consistent with C.

THEOgEM 1. Q is a partial ordering relation over A.
Proof. Let a be a location of rank in a chain A 1- Since, in the partial ordering

relation P, every locations in A1 are preceded by at least locations (themselves)
in A1, aQa, and Q is reflexive.

Let al and a2 be two locations in the same chain of C. According to Lemma 1,
alQa2 implies that (azQal) for al - a2. Now, let al be a location of rank
in a chain A1 and a2 bea location ofrankj in a chain A2, where A1 4: A2. Suppose
that alQa2 and azQa That is, in the partial ordering relation P every locations
in A1 are preceded by j or more locations in A2 and every j locations in A2 are
preceded by or more locations in A1. Let 11 be a subset of locations in A1.
Let J1 be a subset ofj locations in A2 that precede the locations in 11. Let I2 be a
subset of locations in A1 that precede the locations in J1, and J2 be a subset of
j locations in A2 that precede the locations in I2 and so on. Consider the sequence
of subsets of locations I1JllzJ2 I,,J, Since there is only a finite number of
distinct subsets of locations in A1 and a finite number of distinct subsets of j
locations in Az, sooner or later a subset will appear for the second time in the
sequence. Let I be a subset that appears twice in the sequence. That is, we have
Iijli2 IJIi+l... Jr_llrJrI Let al,a2, ..., ai be the locations in I.



SORTING ALGORITHMS 293

Location all precedes at least one of the locations in Jr. Let at1 denote one such
location. That is, allParl. Also, location at1 precedes at least one of the locations
in I which, in turn, precedes one of the locations in Jr- and so on. Repeating the
argument, we obtain ar Pat,, for some atu in Ii. We thus have

alPar, arlPalu.
Similarly, we have

al2Par2 ar2Palv,

atiPari, ariPa
for at2 ari in Jr and atv, ..., alw in It. Again, since there is only a finite number
of locations in I and Jr, transitivity of the relation P implies that axParx and

arxPa for some ax in I and some ar in Jr- However, this is a contradiction to
the assumption that P is a partial ordering relation since, clearly, ate,
Therefore, it is not possible that alQa2 and azQa 1. We conclude that Q is anti-
symmetric.

Let a be a location of rank in a chain A 1, a2 be a location of rank j in a
chain A2, and a3 be a location of rank k in a chain A3. Suppose that alQa2 and
azQa3 Since in the partial ordering relation P every k locations in A3 are preceded
by j or more locations in A2 which are, in turn, preceded by or more locations
in A 1, every k locations in A3 are preceded by or more locations in A 1. Therefore,
we have alQa3, and Q is transitive.

THEOREM 2. For any configuration (A, dpe), the configuration (A, dpec) is con-
sistent with Q.

Proof. Suppose that al Qa2.
Let al and a2 be two locations in the same chain of C. According to Lemma 1,

alCa2. Therefore, ec(al) <= dPec(a2).
Let a be a location of rank in a chain A1, and a2 be a location of rank j

in a chain Az, where A1 4: A2. Since a2 is a location of rank j, dpec(a2) is the jth
smallest integer among the contents of the locations in A2. That is, for a certain
subset ofj locations a21 a22, azj in A2,

dppc(a2) max be(a21), be(a22), b/,(a2j)].

Let al, a12,"’, ali be of the locations in A1 that precede the locations
a21, a22, azj in the partial ordering relation P. Thus,

max [dpe(a ), be(a12), c])e(ali)] <= max [be(a21), qbe(az2),"’, qSe(azj)].

Since a is a location ofrank i, di)ec(al) is the ith smallest integer among the contents
of the locations in A1. Thus,

c/)ec(al) <= max [ripe(all ), be(a12), ..., p(ali)].

Therefore, we have b/,C(al) =< q/,c(a2).
We conclude that (A, (])ec) is consistent with Q. V1
THEOREM 3. For any configuration (A, c/)ec), Q is the largest partial ordering

relation that (A, c/)ec is consistent with.
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Proof. Let al be a location of rank in a chain A1, and a2 be a location of
rank j in a chain Az, where A1 4: A2. Suppose that (al, a2)q Q. This means that
there is a subset ofj locations a21 az2 az) in A2 that are preceded by at most
i- 1 locations in A1. Let a11, a12,’", al,i-1 denote these locations. Let us
choose be such that

4p(ax) I 0 if in the partial ordering relation P, a, precedes one or more
of the locations a21 a22 azj
otherwise.

Note that the configuration (A, 4e) indeed is consistent with P. Since

qSe(a21) 4e(az2) 4e(azj) 0,

4e(a11) 4)e(a12) e(al,i_l) O,

and moreover, the contents of all other locations in A1 are 1, it follows that

c/)ec(a2) O,

cDPc(al) 1.

Therefore, qbec(al) > dpec(a2). [--I

We illustrate now the results we obtained by an example. Suppose that we
are to select among 2n integers the n largest ones. Let b(a), b(.a)_), ..., b(a,),
b(a,+ 1), b(a,+ 2),"’, b(a2,) be the 2n integers which have been sorted such that
4(al) _-< b(a2) =< _-< b(a,) and b(a.+ 1) --> b(a,+2) >_- b(a2,) as shown in
Fig. l(a).4 Let us compare b(ai) with qS(a,+i) and interchange their positions if
4(ai) > (])(a,+i) for 1, 2,..., n. The claim is: The n integers in the upper row
of locations are the n largest integers we want to select. To prove the claim using
the concepts we have developed, we let P be the partial ordering relation shown
in Fig. l(a) and C be the shift shown in Fig. l(b). Let Q P (R) C. We want to

4 We shall represent partial ordering relations by their Hasse diagrams.



SORTING ALGORITHMS 295

show that aiQan+j for 1, 2, ..., n and j 1, 2, ..., n. However, according to
Theorem 2, such a result is obvious because every subset of two locations in the
chain Aj is preceded by at least one location in the chain Ai for all Ai and Aj.

We now establish a relationship between Q and P and C.
THEOREM 4. Let Q P (R) C. Then Q Co po C.
Proof. Suppose that aliQa2j. Ifali and a2 are in the same chain of C, accord-

ing to Lemma 1, aliCa2. Clearly, (ali, a2) e C P C. Let ali and a2 be in differ-
ent chains of C. Let a11, a12,"’, ali,"’, aim denote the locations in A1 with
the rank of air being r for r 1,2, ..., m. Let a21,a22, "’, a2, "", a2n denote
the locations in A2 with the rank of a2r being r for r 1, 2, .-., n. Consider the
subset ofj locations a21, a22,"’, a2j in A2. Since these j locations are preceded
by at least locations in A1, there is a location
such that alkPa2t with k >__ and __< j. That is, aliCalk alkPa2t and a21Ca2j. It
follows that (ali a2j C p C.

Let Q P (R) C. We say that C preserves P if P
_

Q. According to Theorem
we have the following theorem which is due to Gale and Karp [3].

THEOREM 5. A shift C preserves a partial ordering relation P if and only if"
(i) For a v RE, a1Ca2 implies that -q(aEPal).
(ii) For a location a of rank in a chain A1 and a location a2 of rank j in a

chain A2, where A A2, alPa2 implies that in the partial ordering relation P
every j locations in A2 are preceded by or more locations in A1.

If C preserves P, then using Theorem 4, it can be shown that Q C P C.
However, the result can be sharpened to that in Theorem 6 which is due to Gale
and Karp [3]. We present an alternative proof to the theorem.

THEOREM 6. Let Q P (R) C. If C preserves P, then Q P C.
Proof. Suppose that aliQaEj. If al and aEj are in the same chain of C, clearly,

(ai, aEj) P C. Suppose that ali and aEj are in two different chains A1 and A2.

Let al,a12, ali,’", aim be the locations in A1 with the rank of al, being
r for r 1,2,..., m. Let a21 a22, a2j,...., a2n be the locations in A2 with
the rank of a2r being r for r 1, 2,..., n. Consider the subset of j locations
a21,a22, ...,a2 in A2. If (ali,a2u)eP for some u =<j, then (ali, a2)ePoC.
Assume that (ali, a2u P for all u <_ j. There must be a location alk in A1, k > i,
such that (alk, a2, P for some u =< j, because in the partial ordering relation P
the j locations a21, a22, "’", a2j are preceded by at least locations in A1. Since
(alk, a2, e P implies that (alk, a2i Q, repeating the argument, we have (al, a2v)
e P for some > k and v =< j, which, in turn, implies (al, a2.j) e Q. Again, repeating
the argument, we finally have (aim, a2j Q. However, since the subset of j loca-
tions a21, a22, "’", a2j are preceded by almost m locations in A (all locations
except a ), we have a contradiction.

COROLLARY 6.1. Q C p.

Proof. It is not difficult to show that Q-X= p-1 C-1 which implies
Q=CoP.

COROLLARY 6.2. If C preserves P, C commutes with P.

3. Analysis of sorting algorithms. The results in 2 can now be applied to the
analysis of sorting algorithms. Let Ck, Ck-, "’", C2, C1 be a sorting algorithm.
Clearly, for any initial configuration (A, b), the configuration (A, Pcc_...cc)
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is consistent with the partial ordering relation

(((c, (R) c,_ ,) (R) ...) (R) c) (R) c,.
As an illustrative example, let us consider the problem of sorting four integers
by the well-known procedure "bubble sort." Let A {aa,az,a3,a,). Let
C6 (a3, a4), C5 (a2, a3), C,, (al, a2), C3 (a3, a4), C2 (a2, a3), C

(a3, a4). In Fig. 2 the partial ordering relations constructed in a step-by-step
manner are shown.

We want to point out that although

(((c (R) c_,)(R) ...) (R) c) (R) c,
is a partial ordering relation that the configuration (A,cc_,...c,c,) is con-
sistent with, it might not be the largest one. This is the main point of our discussion
in this section. Let P be a partial ordering relation and C1 and C2 be two shifts
over A. We ask the question: Under what condition will (P (R) C2)(R) Ca be the
largest partial ordering relation that (A, q,c2c,) is consistent with? (For a reader
who begins to worry about the correctness of Theorem 3, we hasten to point out
that although Theorem 3 guarantees that (P (R) C2)(R) C1 is the largest partial
ordering relation that the configuration (A,e(R)c2)c,) is consistent with,
(P (R) C2)(R) Ca might not be the largest partial ordering relation that the con-
figuration (A, c,cc,) is consistent with.)

We establish first an alternative way of defining the partial ordering relation
P (R) C. Let C be a shift over A. Let r be a one-to-one function from A onto A

To simplify the notations, we write (a3, a4) to mean a chain in which a3Ca,. We also omit all
trivial chains.
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such that a and ’c(a) are in the same chain of C for every a A. In other words,
’c is a permutation ofthe locations in each of the chains. We shall call z a C-permuta-
tion of A. Let P be a partial ordering relation over A. Let ’c(P) denote a binary
relation over A such that if (al, a2) P, (al, a2) q C, and (a2, al) C, then (’c(al),
’c(a2)) ’c(P). A C-permutation ’c is said to be P-compatible if (’c(P)U C)* is a
partial ordering relation over A. 6 Let - denote the set of all P-compatible C-
permutations of A.

LEMMA 2. Let "c be a C-permutation of A that is P-compatible. Then

(’c(P) U C)*
_
P (R) C.

Proof. Let all,a12 ..., ali, "", aim be the locations in a chain A of C
with the rank of air being r for r 1,2,..., m. Let a21 a22,..., azn be the
locations in a chain A2 of C with the rank of azr being r for r 1, 2, ..., n. Suppose
that (ali,azj) P (R) C. Consider thej locations -c-1(a21), ’C- 1(a22), ’C- l(azj in
A2 Since they are preceded, in the partial ordering relation P, by or more loca-
tions in A1, there exists (alt, azs) "c(P) for _>_ i, s =< j. Thus, we have

(ali, azj) (’c(P) U C)*. [2

TrIEOREM 7. The intersection of all partial ordering relations (z(P) U C)*
corresponding to all P-compatible C-permutations "c is equal to P (R) C. That is,

rl (’c(P) u C)* P (R) C.

Proof. According to Lemma 2,

n (’c(P) U C)*
_
P (R) C.

We shall show that if (al,a2)q P (R) C, there exists ’co Y- such that (al, a2)
(’c0(P) U C)*. Suppose that a is in a chain A1 with its rank being i, and a2 is

in a chain A2 with its rank being j. Since (al, a2) P (R) C, there is a subset of j
locations in A2 which are preceded, in the partial ordering relation P, by at most
i- 1 locations in A a. Let J denote such a subset ofj locations in A2 and let I
denote the set of the predecessors in A 1. Let K denote the subset of locations
in A2 which, in their partial ordering relation P, are predecessors of the locations
in I and J. Let L J U K. Let us define a binary relation P’ over A:

P’ {(x, Y)lx L and y e A2 L, or x e I and y e A I}.
It is not difficult to see that (P U P’)* is a partial ordering relation over A. Let
us embed (P U P’)* in a linear ordering relation T over A.

We now define a C-permutation ’co such that for any two locations x and y
in the same chain of C, xTy implies that "Co(x)C’co(y). We note first that ’co is P-
compatible. Moreover, in the partial ordering relation (’co(P) U C)* the ILl lowest
locations in A2 will only be preceded by the III lowest locations in A1. Thus

(at, az) "co(P)

for all a in A1 whose rank is equal to or higher.

We use R* to denote the transitive and reflexive closure of the binary relation R.
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After obtaining a characterization of the partial ordering relation P (R) C
as that in Theorem 7, we are ready to answer the question raised at the beginning
of this section.

A shift C is said to rearrange P if there exists a P-compatible C-permutation
z of A such that P (R) C (z(P) 13 C)*.

LEMMA 3. If C rearranges P, then for any configuration (A, dp) that is con-
sistent with P (R) C there is an initial configuration (A, dp’) such that (A, dp’) is con-
sistent with P and (A, dp’c) is equal to (A, dp).

Proof. Let z be a P-compatible C-permutation such that

P (R) C ((P) U C)*.

Let qb’(a) b(z-l(a)) for all a e A. Clearly, (A, q’) is consistent with P, and (A, b:)
is equal to (A, q). IN

THEOREM 8. If C2 rearranges P, then (P (R) C2)(R) C is the largest partial
ordering relation that (A, dpPc2c, is consistent with.

Proof. Suppose that (al, a2) q (P () C2) ( C1. Using the argument in the
proof of Theorem 3, we can construct a configuration (A, b) that is consistent
with P (R) C2, with dpc,(al) > tcl(a2). According to Lemma 3, there is an initial
configuration (A, b’) that is consistent with P with (A, q5:2) equal to (A, b). Con-
sequently, (A, Ckcc,) is not consistent with the partial ordering relation
(((P (R) C2) (R) C1) U (al, a2))*. IN

COROLLARY 8.1. For any initial configuration (A, dp), if Ci rearranges
C () Ck 1) () ") () C + for 2,..., k 1, then C ( Ck_ 1) () () C2)

(R) C1 is the largest partial ordering relation that (A, dcc, ...cc,) is consistent with.
It seems that the converses of Lemma 3 and Theorem 8 are also true. We

state the following as conjectures.
CONJECTURE 1. If C does not rearrange P, then there exists a configuration

(A, ) consistent with P (R) C such that there is no configuration (A, q’) which is
consistent with P and (A, q:) is equal to (A, b).

CONJECTURE 2. If Ck does not rearrange P, then there exist CR-1, CR-2,
C2,C1 such that (((P (R) CR) (R) Ck_l) (R) C2) (R) C1 is not the largest partial
ordering relation that the configuration (A, d?,cc ,...cc,) is consistent with.

4. Construction of sorting algorithms. The results presented in 2 also lead
to a recursive procedure for designing sorting algorithms. Let R be a partial
ordering relation over ,4 according to which the integers in ,4 are to be sorted.
If we choose a shift C over A such that al Ca2 implies that -(a2Ral) for al a2,
we can determine a partial ordering relation P such that R

_
C (R) P. The de-

composition step can then be repeated to decompose P until a sorting algorithm
consisting of a sequence of shifts over A is determined.

Let us illustrate the idea with a simple example: Let A {a1, a2, a9)
and R be the partial ordering relation shown in Fig. 3(a). Let C1 be the shift shown
in Fig. 3(b) where the three chains are labeled A1, A2, Aa. We construct P in
Fig. 3(c) so that the conditions: (i) every two locations in A2 are preceded by two
or more locations in A1, (ii) every three locations in A3 are preceded by one or
more locations in A2, are satisfied. (Note that condition (i) implies that every
two locations in A2 are preceded by one or more locations in A1 and every three
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locations in A2 are preceded by two or more locations in A .) We then decompose
P by first choosing the shift C2 in Fig. 3(d) and then determining the partial order-
ing relation C3 in Fig. 3(e) such that P

_
C3 (R) C2. Since C is a shift, (C, C2,

is a sorting algorithm for R. That is, R
_
(C (R) C) (R)

A A A
03 06 09 03 06 09

Ol 0. 04 07

R C
(o) (b)

06 0603 ,, --.-- 09 03 09

02 05 08 0205 08

01 04 07 01 04 O 07

P C:
(c) (d)

3 ) 6 09

O@ t 05 ) 08

Ol 04 t 07

C3
(e)

FIG. 3

The procedure suggested above does not include a systematic construction
of the partial ordering relation P. Thus, in constructing P care must be exercised
so that P is indeed a partial ordering relation. (Specifically, the antisymmetric
law must be satisfied.) Theorem 9 below provides a systematic decomposition
procedure.

Let R be a partial ordering relation over A. Let C be a shift such that C
_

R.
Clearly, (R C)* is a partial ordering relation.

THEOREM 9. The shift C preserves the partial ordering relation (R C)*.
Proof. To simplify the notations, let P (R- C)*. First, for a 4: a2,

alCa2 implies that -q(aPal). Next, let all,alz,al, ..., ali be locations in a
chain A1, where air is of rank r for r 1, 2, ..., i. Let azj, az,j+ 1, az,j+ 2, a2n
be locations in another chain Az, where azr is of rank r for r j,j + 1,..., n.
Suppose that aliPaj. Note that al,Pazv for u 1, 2, ..., and v j,j + 1, ..., n.
That is, every one of the locations azj az,j+ 1, azn is preceded by the locations
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a11, a12, "’", ali in P. Since every subset of j locations in A2 must contain one
or more of the locations azj, a2,j+ 1.,"’, azn, every subset ofj locations in A2 is
preceded by or more locations in A1. Therefore, according to Theorem 5, C
preserves P.

COROLLARY 9.1. (R C)* (R) C R.
Proof. To simplify the notations, let Q (R C)* (R) C. Since C

_
Q and

(R-C)*___Q, R_Q. Since C___R, (R- C)*___R, Q= Co(R- C)* _R.
Therefore, Q R. [--1

Repeated applications of Theorem 9 lead to a decomposition of the partial
ordering relation R into a sequence of shifts Ck, Ck_,..., C2, C such that
(C, Ck-1, "’", C2, C) is a sorting algorithm for R. To be explicit, we first choose
C1 such that C1 - R, we then choose C2 such that C2 - (R C)*, and then
choose C3 such that C3 - ((R C1)* C2)*, and so on. To assure that R will
be decomposed into a finite sequence of shifts, we want to select the shifts such
that

C1 f"l (R C1)* A, C2 ((R C1)* C2)* A0,

C3 ["] (((R C)* C2)* C3)* Z0,

and so on. 7 In other words, in selecting the shift Ci we should follow the rule that
if (a, as) C then for any location a3 such that (a, a3)6 (((R C

)* C2)* Ci )*, we should have (a a3)Ci_)* and (a3, as) (((R C
Ci or (a3, as) Ci.

As an example, suppose we want to design a sorting algorithm for arranging
six integers in ascending order. Let R be the partial ordering relation shown in
Fig. 4(a), and C1 be the shift shown in Fig. 4(b). We obtain (R C1)* as shown
in Fig. 4(c). Let C2 be the shift shown in Fig. 4(d). We obtain ((R C1)* C2)*
as shown in Fig. 4(e). Let C3 be the shift shown in Fig. 4(f) and C be the shift
shown in Fig. 4(g). Since C3 preserves the shift C, and C (R) C3 ((R C)*

C2)*, we conclude that (C, C3, C2, C) is an algorithm for sorting six integers
linearly.

The result can be extended to construct an algorithm for arranging 2n
integers into ascending order. Let A {a,a2,... a,,a,+l,..., a2n}. Let P
be a partial ordering over A such that

P {(ai, a)[1 < =< n, < j}

[..J {(ai, aj)ln + <= <= 2n, < j}

U {(ai,a,,+i)[1 <_i<= n}
U {(a,+i,a+)ll <-_ <_ n k} U A.

Let C be a shift over A such that

C {(a,+,a+2)ll < =< n 2k} U A.
It can readily be shown that C preserves P. Consequently, a sorting algorithm

denotes the binary relation {(ai, ai)laie A}.
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for arranging 2n integers into ascending order is

Ck {(ai,aj)ll _-< =< n, < j}

U {(ai, aj)ln / <__i <_ 2n, < j} U A,
Ck_ {(ai, a.+i)ll _-< __< n} U A,
Ck_ 2 {(a.+i,ai+,)[1 <= <_ n t} U A,

where equals the largest power of 2 not exceeding n,

C_ 3 {(a.+i,ai+t/2)[1 <= iN n t} U A,
C4 {(a.+i, ai+8)[1 <-_iN n- 8} O A,
C3 {(a.+,, ai+4)ll _-< =< n 4} U A,
C2 {(a.+i,ai+z)[1 <= iN n 2} IA A,
C1 {(a.+,,ai+l)[1 <_i__< n- 1} U A.
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FIG. 5

For instance, Fig. 5 shows such a sorting algorithm for 18 integers. It is interesting
to observe that this algorithm is indeed the odd-even merge algorithm for two
sorted lists of the same length due to Batcher [1]. Such an observation is not
immediately obvious. Indeed, our description of the algorithm is quite different
from that of Batcher’s. We leave it to the reader to compare the two descriptions,
and hope that our description will add some insight to how the odd-even merge
algorithm works.

Note that for any sorting algorithm (Ck, Ck- , "’", C1) constructed according
to the result in Theorem 9, Ck- preserves Ck, Ck-2 preserves Ck (R) Ck-, and
so on. In other words, in such a sorting algorithm every shift preserves the partial
ordering relation which resulted from previous steps. Theorem 10 below suggests
a variation to the construction procedure so that sorting algorithms containing
shifts that do not preserve the result of previous sorting steps might also be dis-
covered.
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Let P be a partial ordering relation and C be a shift over A. Let z be a C-
permutation of A as defined in 3. Let us define a relation P’ over A such that
alP’a2 if and only if z(al)Pz(a2). Clearly, P’ is also a partial ordering relation.

THEOREM 10. P (R) C P’ (R) C.
Proof. Every j locations in a chain A are .preceded by or more locations in

another chain A2 in the partial ordering relation P’ if and only if every j locations
in A1 are preceded by or more locations in A2 in the partial ordering relation
P.

Theorem 10 enables us to modify the construction procedure that is based
on Theorem 9. Specifically, after selecting C1 and determining P (R C1)*,
we can construct P’ as in Theorem 10 so that P (R) C1 P’ (R) C1.

The results in Theorem 10 can be applied to derive Batcher’s odd-even
merge algorithm for merging two sorted lists which are not of the same length.
For the sake of simplicity, let us, instead of deriving the general result, show how
to merge a sorted list of seven integers and a sorted list of three integers. Let
R be the partial ordering relation shown in Fig. 6(a),8 and let C be the shift shown
in Fig. 6(b). We obtain (R C1)* as shown in Fig. 6(c). Let C2 be the shift shown
in Fig. 6(d), and Ca be the shift shown in Fig. 6(e). Since C2 preserves Ca, and
Ca (R) C2- (R- C1)*, (Ca, C2, C1) is a sorting algorithm for R. However, it
can easily be seen that for the shift C shown in Fig. 6(f), C @ C2 Ca (R) C2

(R C1)*. Therefore, (C, C2, C1) is also a sorting algorithm for R. Note that

Note that we label the locations in such a way that the final result will become clearer.
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C has two chains, one contains seven locations and the other contains three
locations.
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A MINIMUM DISTANCE ERROR-CORRECTING PARSER
FOR CONTEXT-FREE LANGUAGES*

ALFRED V. AHOy- AND THOMAS G. PETERSON

Abstract. We assume three types of syntax errors can debase the sentences of a language generated
by a context-free grammar: the replacement of a symbol by an incorrect symbol, the insertion of an
extraneous symbol, or the deletion of a symbol. We present an algorithm that will parse any input
string to completion finding the fewest possible number of errors. On a random access computer the
algorithm requires time proportional to the cube of the length of the input.

Key words. Syntax error, error correction, parsing, context-free grammar, computational
complexity

1. Introduction. What should a compiler do when it discovers an error in the
source program? Surprisingly, much of the literature published to date on compiler
design has not adequately answered this question. Even in the area of parser
design, relatively few papers have considered parsing algorithms that recover
gracefully from syntax errors [33-[83, [10]. Many published parsing algorithms
call for a parser merely to halt and report error on encountering the first syntax
error.

In this paper we present a parsing algorithm for context-free grammars that
will parse any input string to completion finding the fewest possible number of
syntax errors. On a random access computer the algorithm takes time propor-
tional to the cube of the length of the input. Although this is the fastest known
minimum distance error-correcting parsing algorithm for context-free grammars,
the time required is probably excessive for most compiler applications. Neverthe-
less, we feel the algorithm can serve as the yardstick against which the error-
detecting and correcting capabilities of other parsing algorithms can be evaluated.

2. Syntax errors. Let L be a nonempty set of strings over some finite alphabet
E. We assume that a string not in L is derived from some sentence in L by a sequence
of error transformations. In this paper we assume the following three types of
syntax errors are possible:

(i) the replacement of a symbol by another symbol,
(ii) the insertion of an extraneous symbol, and

(iii) the deletion of a symbol.
We shall describe these errors in terms of three transformations TR, T and

To, respectively, from Z* to the subsets of E* defined as follows. For x and y in Z*:
(i) xby is in TR(xay for all a : b in Z.
(ii) xay is in Tl(Xy) for all a in

(iii) xy is in To(xay) for all a in
We write x - y if y is in T/(x) for some in R, I, D}. Note that - is symmetric.
If p is a binary relation, pk will denote the composition of p with itself k times,

pO the identity relation, and p* the reflexive and transitive closure of p.

* Received by the editors June 6, 1972, and in revised form October 5, 1972.- Bell Laboratories, Murray Hill, New Jersey 07974.
:I: Bell Laboratories, Whippany, New Jersey 07981.
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We define a Hamming distance on strings in E* by letting d(x, y) be the
smallest integer k for which x - y.

Suppose L is a language over alphabet E. We define Ek(L), the set ofstrings in
E* with k errors, as follows"

(i) Eo(L)= L.
(ii) Ek(L {x in E*I there exists a string w in Ek-I(L) such that w - x and

x is not in Ek_I(L for 1 =< =< k}.
A string x is in Ek(L) if and only if there is a sentence w in L such that w is

distance k from x. Thus if x Ek(L) and x y, then y Ei(L for some such that
k-l<i<k+l.

Given a string x in Ek(L) there is a sequence of intermediate strings Wo, wl,

", Wk such that w Ei(L) for 0 =< k and Wk X. A sequence of error trans-
formations used to derive w from w_ for =< k will define a set of k errors
in x.

For example, suppose L {abc}. Then given the string bbdc, we can say the
first b is a replacement error and the d is an insertion error because
abc - bbc bbdc.

TR
Note that for an x in Ek(L) there can be many different sequences of interme-

diate strings and transformations as above, so that in general the errors in x are
not unique. If desired, uniqueness can be achieved by some lexicographic conven-
tions regarding how the sequence of intermediate strings and error transformations
are to be chosen.

3. Context-flee grammars. A context-free grammar (grammar for short) is
a 4-tuple G (N, E, P, S), where

(i) N and E are finite disjoint alphabets of nonterminals and terminals,
respectively.

(ii) P is a finite set of productions of the form A a, where A is in N and
a is in (N U X)*.

(iii) S is a distinguished symbol in N.
If A a is in P, we write flAy flay for all fl and y in (N I..J E)*. If ? is in

E*, we also write flAy flay to denote a right-most derivation. Similarly, if fl is

in E* we write flAy flay to denote a left-most derivation. We shall drop the
G,lm

subscript G from , , whenever possible.
lm

The language generated by G, denoted L(G), is the set {w in E*IS , w}. If w
is in L(G), then there exists a sequence of strings in (N U E)*, ao, a, ..., a,, such
that ao S, a_ a for 1 =< =< n and a, w. Suppose production pi in P is
used to derive a from a_ for =< =< n. The sequence of productions n PlP2
..p, is called a parse ofw according to G and we shall write S w to denote the

right-most derivation using this sequence of productions.
For the remainder of this paper we shall make the following assumptions

about a grammar G (N, E, P, S)"
(i) We assume L(G) .

(ii) We assume G contains no useless symbols. That is, for each X in N U 2
there is a derivation of the form S wXy wxy, where w, x and y are
in 2*.
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The concept of one grammar covering another grammar will be useful.
Let G1 (N1,21, P, S) and G2 (N2,2;2, P2, $2) be two grammars such that
L(G1)

_
L(G2). We say G2 covers GI if there is a homomorphism h from P2 to

P such that if x is in L(G) and r is a parse of w according to Ga, then there is
a parse rt’ of w according to G2 such that h(rc’)

4. Error-correcting parser. Our problem can be stated as follows" Given a
grammar G (N, 2;, P, S), we want an algorithm that takes as input any string x
in 2;* and produces as output a parse for some string w in L(G) such that the
distance between w and x is as small as possible. (If x is in L(G), then clearly we will
produce a parse for x.) An algorithm of this nature will be called an error-correcting
parser for G.

We can design such an error-correcting parser for G as follows. First we add
to G a set of error productions to obtain a covering grammar G’ such that L(G’)

2;*. Then we design a parser for G’ that uses as few error productions as pos-
sible in parsing an input string x. The error productions used in a derivation of w
according to G’ will indicate the positions and types of the errors in w.

5. Error productions. The following algorithm will add error productions
to the grammar G (N, 2;, P, S) such that the extended grammar covers G and
generates 2;*.

ALC,ORTHM 1. Let G (N, 2;, P, S) be a context-free grammar. From P
construct a new set of productions P’ as follows"

1. If A --, 00blb22... bmom, m >= O, is a production in P such that ei is
in N* and bi is in E, then add the production A - oEblEb22... Eb,e to P’,
where each E, is a new nonterminal.

2. For all a in 2; add to P’ the productions
(a) Eo -- a,
(b) E --, b for all b in 2;, b 4: a,
(c) E, Ha,
(d) I a,
(e) E, e, where e is the empty string.

Here H and I are new nonterminals.
3. Add to P’ the productions

(a) S’-, S,
(b) S’---, SH,
(c) H - HI,
(d) H I.

Here S’ is a new start symbol.
Let G (N’, 2;’, P’, S’), where N’ U U {S’, H, I} U {E,la e 2;}. We shall

call G’ the covering grammar for G.
In P’ a production of the form E b, E e or I a is called a terminal

error production. The production E,---, b introduces a replacement error. E,--. e
introduces a deletion error. I---, a introduces one insertion error. Since H can
derive any nonempty string, the production E,--. Ha introduces a sequence of
one or more insertion errors in front of a. To place one or more insertion errors
at the end of a sentence we apply the production S’---, SH.

To see that G’ covers G we note that by using the productions added to P’
in step 1, we have S axaz...a if and only if S Ea, Eaz"" Ea,,. Using the

G G’
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productions Eaa, we have Ea,E2...E,,.ala2...a Thus for each w in
L(G), there is a parse of w according to G’ from which the parse of w according to
G can be recovered by means of a homomorphism.

Using the productions added to P’ in steps 2 and 3, E can derive any terminal
symbol b 4= a, or any terminal string ending in a, or the empty string. Moreover,
S’ SH is also a production and H derives any nonempty terminal string. Thus,
since L(G) is presumed to be nonempty, L(G’) 2".

The grammar G’ is ambiguous. We will parse an input string according to
G’ but because of the following theorem we can try to use as few terminal error
productions as possible.

THEOREM 1. X is in E(L(G)) if and only if there is a derivation ofx in G’ using k
terminal error productions and no derivation using fewer than k terminal error
productions.

Proof Let h be the homomorphism from P’ to P such that h(p’) p if p’ is a
production added to P’ in step of Algorithm and h(p’) e otherwise. To prove
the theorem we shall prove the following statement by induction on k.

(*) S = w, x e Ek(L(G)) and w x if and only if S’ 2 x, h(rc’) rt, rt’ contains
G G’

k terminal error productions and there is no rt" with fewer terminal error produc-
tions such that S’ ’’

G’

Basis" If k 0, t’ will contain only productions from step and step 2(a).
Thus (*) is trivially true.

k+l
Inductive step" Suppose S w, y E+ x(L(G)) and w - y. Then there is an

x in E(L(G)) such that w x y. From the inductive hypothesis, there is a

derivation S’ x such that h(rc’) rc and re’ contains k terminal error productions
G’

and there is no derivation of x using fewer error productions. If x - y by TR such
that the ith symbol in x, say a, is replaced by an erroneous symbol, say b, then we
can modify the derivation S’ x replacing the production of the form E -, a that

G’

is used to derive the ith terminal symbol in x by the derivation Eab.
Thus, S’ y, where h(rc") rc and re" contains k + terminal error productions.

G’

Similar arguments can be made if x y using transformation T or To.
Now suppose that there is a derivation S’ & y such that h(p) rc and p uses

G’

< k + 1 terminal error productions. Clearly > 0. Let the first terminal error
production in p be E, - b. We could replace this production by E - a to obtain

a parse p’ such that S’ x’, h(p’) rc and p’ contains 1 terminal error produc-
G’

tions. But then by the inductive hypothesis x’ would be in El_ (L(G)). However,
this is impossible since x’ y and y is in E+ (L (G)). A similar argument prevails
if the first terminal error production in p is I --, a or E, e.

The proof of the converse is straightforward.

6. Minimum disiance parsing. We shall now describe a parsing algorithm for
G’ that uses as few terminal error productions as possible. This algorithm is

Note that if x Ek(L(G)), y e Ek+ I(L(G)) and x - y by a replacement error in position of x,
then the ith symbol in x cannot be a replacement error.



ERROR-CORRECTING PARSER 309

essentially Earley’s [2] algorithm (without look ahead) with a provision added
to keep count of the number of terminal error productions used. We employ the
notation used in [1] to describe Earley’s algorithm.

Informally our algorithm works as follows. Let G’ be the covering grammar
for G and let x alaz...a be the input string to be parsed. We construct a
sequence oo, o1, ..., , of lists of items. An item is an object of the form

A --+ o fl k

where
(i) A --, aft is a production in G’;

(ii) is a special metasymbol, indicating how much of the production is cur-
rently applicable to a parse;

(iii) is an integer, 0 <= __< n, indicating the input position at which a deriva-
tion from began.

(iv) k is a nonnegative integer indicating the number of terminal error
productions used in the derivation from .

Item [A -fl, i, k] will be on list if and only if for some 7 in (N U )*,

() s’*=> ala2 aiATG’

(2) ai+l"’" ajG’

such that derivation (2) uses k terminal error productions and there is no deriva-
tion of ai+j.., aj from z using fewer terminal error productions.

Note that x is in L(G) if and only if IS’ S., 0, 0 is in o,. From Theorem 1,
x is in Ek(L(G)) if and only if an item of the form S’ a., 0, k] is in o, and no item
of the form [S’ --+ ft., O,/] is in o, for < k.

The sequence o0, , .-., , will be called the sequence of parse lists for x.
The following algorithm can be used to construct the parse lists for an input string.

ALGORITHM 2.
Input" The covering grammar G’= (N’,Z’,P’,S’) and an input string

x ala2...a in Z*.
Output" o, 1,’", ,, the parse lists for x.
Method" Initially, all lists are empty. Construct o as follows"
1. Add items IS’ S, 0, 0] and IS’ SH, O, 0] to o0

2. If [A a. Bfl, O, k] is in o and B 7 is a production in P’, then add item
[B -+ "7, 0, 0] to o.

3. If [A a. BT, 0, k] and [B ft.. 0, 1] are in oo, then add [A --* B. fl, 0, m]
to oo, where m k + + 1 if B fl is a terminal error production and m k +
otherwise. Store with item [A---, aB. fl, 0, m] two pointers, the first to item
[A . Bfl, O, k, the second to item [B ft., 0,1]. However, if [A aB. fi, 0, m’]
is already in oo and m’ _<_ m, then do not add [A aB. fl, 0, m] to o. On the other
hand, if [A --, aB. fl, 0, m"] is in oo and m" > m, then delete this item from

4. Repeat steps 2 and 3 until no new items can be added to Jo.
Suppose that o,1,’", -1 have been constructed. We construct

__< j _<_ n, as follows"
5. For each item [A . aft, i, k] in

_
such that a aj, add [A -+ 0a- fl, i, k]

to . Along with this item add a pointer to item [A --+ a. aft, i, k] in

_
1.
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6. If [B- 7", i,k] is in j and [A- a. Bfl, h, 1] is in oi, then add item
[A aB. fl, h, m] to ocj, where m k + + if B 7 is a terminal error produc-
tion and m k + otherwise. Include with item [A - aB. fl, h, m] two pointers,
the first to item [A - a. Bfl, h, l] in o and the second to [B - 7., i, k] in .

However, if [A aB. fl, h, m’] is already in for some m’ __< m, then do not
add [A- aB. fl, h,m] to . Likewise, if [A aB. fl, h,m"] is in for some
m" > m, then delete this item from .

7. If [A - a. Bfl, i, k] is in . and B 7 is in P’, then add [B - .,, j, 0] to ..
8. Repeat steps 6 and 7 until no new items can be added to .
In this manner construct the sequence of parse lists o, 1, "’", .
This algorithm is essentially Earley’s algorithm with one additional field in

each item to keep track of the number of terminal error productions used. We are
only interested in derivations using as few terminal error productions as pos-
sible. The pointers stored with the items will be used to reconstruct a parse from
the sequence of parse lists. The following lemmas describe the behavior of
Algorithm 2.

Let o,1,..., , be the parse lists for x ala2...a constructed by
Algorithm 2.

LEMMA 1. If [A - fl, i, k] is in , then
(i) S’* al’.. aiA7 for some 7, and

(ii) a ai+ aj using k terminal error productions.
Proof The proof is a straightforward induction on the order in which items

are added to the parse lists. V]

LEMMA 2. If
(i) S’ * ahflfl’,:: a a Afl’ :: a

(ii) a+ ai using k terminal error productions,
(iii) fl ai+ aj using terminal error productions, and
(iv) there is no derivation of the form aft aa+ 1"’" aj using fewer than k +

terminal error productions,
then [A . fl, h, k] is in i and [A aft., h, k + 1] is in .

Proof The proof is an induction on the sum of the lengths of derivations (i),
(ii) and (iii). V]

From Lemmas and 2 we can conclude that x is in E(L(G)) for some k >__ 0
ifand only if. contains an item of the form IS’ a., 0, k] and no item of the form
[S’ ft.,0, I], where < k.

From the parse lists we can extract a parse for x that uses the fewest number
of terminal error productions by means of the following algorithm.

ALGORITHM 3.
Input’o, 1,"’, ,, the parse lists for x a l... a,.
Output" A parse for x according to G’ such that 7r contains as few terminal

error productions as possible.
Method" In , choose an item of the form IS’ - ., 0, k], where k is as small

as possible. Let z initially be the empty string. Then execute the routine
parse(IS’ a O, k], o,) where parse([A - fl, i, 1], o.) is defined as follows"

1. If fl e, then let be the previous value of 7r followed by production
A - a. Otherwise, 7 is unchanged.
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2. (a) If0 0’a, execute parse([A o’. a, i, 1],

_
1), where [A e’. aft, i, l]

is the item in

_
to which item [A e’a. fl, i, 1] on has a pointer. Return.

(b) If e ’B, then execute parse([B- 7", h,m], ) followed by parse([A- e’. Bfl, i, k], Jh), where [A e’. Bfl, i, k] on Jh and [B ---, 7", h, m] on . are the
two items pointed to by item [A e. fl, i, 1] on . Return.

(c) If e, return. I-!
Algorithm 3 traces out a right-most derivation of x using the pointers stored

with the items to guide the derivation. After executing parse([S’ ., O, k], ,),
r will be a sequence of productions in a right-most derivation of x from S’ in G’
using k terminal error productions. We can obtain a parse of a string w in L(G)
such that w x by applying the homomorphism h in the proof of Theorem
to

Now let us examine the time complexity of finding a minimum distance
parse for an input string x a...a,. We shall use the notation g(n) is O(f(n))
to mean there is a constant c such that g(n) <= cf(n) for all n __> 1.

LEMMA 3. Algorithm 2 can be implemented to run in time O(n 3) on a random
access computer, where n is the length ofthe input string to be parsed.

Proof Steps 1-4 of Algorithm 2 compute o. Since o contains a fixed num-
ber of items, these steps can be executed in constant time.

Let us now examine the amount of time required to compute . We first
note that each list of items , 0 =< < j, contains at most ci items for some con-
stant c, because for each h, 0 __< h _<_ i, there is at most one item of the form
[A - . fl, h, k] on . Thus, step 5 of Algorithm 2 can be executed in O(j- 1)
time.

We shall now show that the repeated application of steps 6 and 7 can be
implemented in O(j2) time in the following manner. We can construct a directed
graph D in which each node of D is labeled by an item on and an edge is drawn
from a node labeled I to a node labeled I’ if item I on can cause item I’ to appear
on ocj because of step or 7. For example, if item B 7" i, is on Jr and list
contains item A . Bfl, h, k], then by step 6 we must add item A B. fl, h,
to . Thus we would have a node I labeled [B - ,., i, in D and an edge from
this node to a node I’ labeled A - B. fl, h, ]. We would also label the edge from
I to I’ with k, the error count of item A . Bfl, h, k] on . We shall use k subse-
quently to help determine the error count for item [A B. fl, h, ]. When we
first construct this graph, however, we shall initially leave the error counts in all
items in empty except for items of the form A aj. fl, i, k], those whose error
count is zero, and those of the form [A .,j, k]. Thus the graph D will contain
O(j) nodes and O(j2) edges, and can be constructed in time O(j2).

To determine the items that will finally be on we must now determine the
correct values for the empty error counts. We can find these values in time O(j2)
as follows. First we isolate the strongly connected components of D. This can be
done in time proportional to the number of edges in D. (See [9], for example.) If
we treat the strongly connected components of D as single nodes, we have essen-
tially reduced D to a directed acyclic graph D’. We can then evaluate the mini-
mum error counts for the nodes of D by examining the nodes of D in such an
order that all direct predecessors of a node N in D’ are examined before N is
examined.
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If N represents a strongly connected component of D, then we need to
traverse the edges in N only a fixed number of times to percolate the minimum
error counts throughout the nodes of N. This follows from the fact that considera-
tion of an item I cannot cause its own error count to subsequently decrease.

In this fashion we can determine the minimum error count for all items
labeling the nodes of D in time proportional to the number of edges in D.

In conclusion, Algorithm 2 can be implemented in O(n3) time because each
list of items can be created in O(n2) time. F1

Algorithm 3 can be implemented in O(n) time. Also the parse for the word in
L(G) can be created from the parse according to G’ in O(n) time. Thus we have a
minimum distance error-correcting parser that operates in time O(n3).

7. Concluding remarks. We can extend this parsing method to include other
types of errors. For example, certain transposition errors can be generated by
error productions and we could include these productions with the other error
productions.

If we do not want to generate all of 2;* with our covering grammar, we could
restrict the error productions so that they would only generate the syntax errors
that are most likely to occur. Wirth [10] has considered a scheme of this nature
in conjunction with precedence parsing.

In compiler applications it is desirable to use a fast parsing algorithm such
as LL or LR parsing. On encountering an error we could invoke our error-cor-
recting parser. Other methods for error recovery and correction in LR parsing
are discussed in [4]-[8].

Finally, it is interesting to ask how a programming language can be designed
so as to maximize the distance between correct programs.
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COMPATIBILITY AND COMPLEXITY OF REFINEMENTS
OF THE RESOLUTION PRINCIPLE*

RICHARD B. KIEBURTZ- AND DAVID LUCKHAM:

Abstract. This paper studies a number of logically complete search strategies (refinements) for
improving the performance of automatic theorem-proving programs based on the resolution principle.
These strategies restrict the number of deductions generated by the program at the expense of some-
times missing the shortest proof.

By considering elementary proof-preserving transformations on resolution proof trees, (i) it is
shown that the conjunction of set-of-support, resolution-with-merging, and linear form deduction is
again a complete refinement; (ii) bounds are obtained on the possible increase in complexity of the
proof trees when the linear form and resolution-with-merging refinements are imposed.

Finally, examples are given which demonstrate the savings in time and storage when refinements
are used to prove some theorems of moderate difficulty in group theory and ternary boolean algebra.

Key words, theorem-proving, resolution principle, mathematical logic, artificial intelligence.

1. Introduction. In experiments with automatic deduction programs based
on the resolution principle it is necessary, in order to get proofs of interesting
theorems, to restrict the resolvents which are deduced by the program. If resolu-
tion was pursued exhaustively without any restriction, the available memory space
in even the largest existing implementations would usually be filled before a proof
was found.

Some of the most useful methods for restricting the deductions operate by
providing a condition on finite sets of clauses so that the program generates
deductions from only those sets satisfying the given condition. Below we shall
discuss the effect some of these conditions have on the set R"(S) of resolvents of
level =< n deducible from the initial set S of clauses. Let R(A, B) denote the set of
resolvents of clauses A and B, let P(A, B) be a condition on pairs of clauses, and
let R"(S) denote the subset of R"(S) defined by

(s) s,
"+ ’(S) {CI(C R(A, B)& A, B "(S) & P(A, B)) V C "(S)}.

It turns out that these methods often yield a refinement of the resolution principle
in the sense that/"(S) is a proper subset of R"(S) for all n, and at the same time
the completeness of the proof procedure is preserved.

Several refinements have been proposed by previous authors. First of all,
Wos, Robinson and Carson (1965) introduced the set-of-support strategy whereby
every clause deduced is required to have a predecessor in a subset K of an incon-
sistent set S of basis clauses, where S K is a consistent set. About the same time,
J. A. Robinson (1965a) developed the notion of hyper-resolution from a refine-
ment which involved computing resolvents of pairs of clauses only if one of them
was false ofa particularly simple model. More recently, Slagle [12] and Luckham [8]
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have considered various forms of deduction relative to more general models.
Andrews [3] has studied resolution with merging, in which a pair of clauses is
resolved only if it contains either a clause from S or else a "merge" (a merge is a
clause C deduced by resolution from clauses A and B such that some literal of C
has ancestors in both A and B). Finally, Loveland [7] and Luckham [8] have intro-
duced the ancestry-filter form deduction (also commonly called linear format) in
which the deduced clauses form a linear sequence {C, C2, ..., C,} such that C
and C2 are members of S, and for any > 2, C is a resolvent of C_ and either a
deduced clause Cj, j =< 1, or a member of S. The point of all of these refine-
ments is to restrict the resolvents generated at any level n to/"(S). This, hopefully,
delays the exponential explosion in the number of resolvents long enough to find
a proof. Several experiments in proving theorems of elementary theories have
been published which show refinements to be helpful and often crucial in obtain-
ing proofs.

In operation, a theorem-proving program may run a number of such refine-
ments in conjunction with each other and with editing strategies which eliminate
some clauses when they are generated. Typical editing strategies set bounds on
the length of clauses or on the depth of functional nesting in any term, or eliminate
clauses which are redundant in the sense that they are subsumed by some clause
already deduced. We shall say that a given set of refinements and strategies is
compatible if the deductive system remains logically complete when those refine-
ments and strategies are used in conjunction (i.e., only those deductions satisfying
the conjunction of all the individual constraints for each refinement and strategy,
are retained). In certain practical situations it is important to know if the refine-
ments are compatible with one another or with the editing strategies. This informa-
tion is often helpful to the user, for example, when the program fails to find a proof
when run with a particular set of refinement and editing strategies.

The following results are known concerning compatability of these refine-
ments. Set-of-support is compatible with resolution-with-merging [3] and with
ancestry-filter form deduction [7], 8], and jointly, with merging and ancestry-
filter [2], [14]. Model-relative deduction (and hyper-resolution) is not compatible
with resolution-with-merging or with ancestry-filter form when the choice of
model is unrestricted [8].

However, the question of compatibility is only a part of the overall question
of usefulness. Although the experimental evidence so far favors the use of these
refinements, it is not at all clear when their use, singly or in conjunction, improves
the chances of finding a proof. There is, for example, the additional question of
the effect of a refinement on the complexity of the proof. When applied to some
problems, a refinement can exclude the simplest proofs from consideration, and
force the program to search for longer proofs or proofs containing more compli-
cated functional terms. The usefulness of one or more refinements may therefore
be a question of the advantages gained in a "trade-off’ between generating fewer
resolvents at each level, and computing resolvents at deeper levels to find a proof.
Sometimes more complex proofs are easier to find with a given refinement than
the simpler proofs are without it. The outcome of such a trade-off is therefore not
obvious, but without information on possible increase in complexity we are in
no position to study it. Furthermore, in practice, the user must allow for a possible
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increase in proof complexity (if he knows about it) by relaxing the relevant editing
strategies.

We shall give sharp bounds on the increase in level of the proof-tree and in
depth of functional nesting in terms which may occur when these refinements are
employed. First, we give a method for constructing from any general resolution
proof, another general resolution proof satisfying the conjunction of the refine-
ment conditions. The complexity bounds are derivable directly from the construc-
tion. In addition the methods used here represent a step in the spirit of Andrews
[3] towards developing a calculus of operations on proof-trees. This may help to
provide a basic theory for certain promising applications of resolution proof
procedures, for example, question-answering and proof by analogy.

Some questions concerning compatibility remain open. For what useful
choices of model are the model-relative refinements of [12] and [8] compatible
with ancestry-filter form? Similarly, when is hyper-resolution compatible with
ancestry-filter form? The conjunction of ancestry-filter form and the general
subsumption editing strategy is incomplete [6]. Which strategy should be modified
and how? In [6] it is proved that if the set of hypotheses S is free of subsumptions,
then ancestry-filter form is compatible with the strategy of deleting any resolvent
in a proof tree which is subsumed by a previous clause in that proof tree or by a
member of S. It should be noted that such results concerning subsumption cannot
be derived from similar results about ground clauses, since a subsumption-free
ground deduction may in fact, be an instance of a general resolution deduction
which is not subsumption-free.

2. Definitions and notation. We shall assume that the reader is familiar with
resolution as a rule of inference and shall not define the basic entities clause, literal,
atom, resolvent, unifier, etc. Individual clauses are denoted by upper case letters
A, B, C, D, E, sometimes with superscripts and subscripts. Literals are lower case
letters p, q,--np,--nq, and by [Pl we shall mean the atom of the literal p. Substitu-
tions are denoted by lower case Greek letters.

By a resolution tree, we shall mean a finite, connected, directed binary tree
with arrows on the arcs directed from the end (or leaf) nodes toward the root and
in which every node is labeled by a clause. The clause appearing on any node
which is not a leaf of the tree is a resolvent of the clauses appearing on the two
nodes immediately preceding it. The precedence relation defined by the arrows is
a partial order; we follow convention in defining the precedence as a reflexive
relation. We shall speak of nodes which are predecessors or successors of a given
node: when we mean the predecessor or successor which is connected to a node
by an arc with no intervening nodes, we use the adjective immediate.

In everything that follows, we shall restrict our discussion to binary resolu-
tion trees. We denote resolution trees by Tr. To designate the set of nodes which
are leaves of a resolution tree we use the notation A(Tr). Individual nodes will be
denoted by lower case letters u, v, w, x, y, z, often with subscripts and primes. The
clause attached to a particular node x will be denoted by cl(x). The set of clauses
which appear on the leaves of a tree is called the base set, denoted Basis (Tr). We

If every clause in S is false of the model, and model-relative refinements do not restrict the
resolvents.
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shall sometimes refer to a clause in the base set as a leafclause of a resolution tree
Tr. A resolution tree Tr is said to deduce Afrom an axiom set S if A cl(root Tr),
and for every leaf x e A(Tr), cl(x) is a clause in S.

The ordinal, or level of any resolution tree Tr is defined inductively as follows.
If root Tr e A(Tr) then #(Tr) 0. Otherwise, root Tr has immediate predecessors
Yl and Y2. Let Tr and Tr2 be the largest subtrees rooted on yl and Y2 respectively.
Then {(Tr) max[{(Tr), ’(Tr2) + 1. The level of a clause B in a resolution tree
Tr is defined as the level of the smallest subtree of Tr which deduces B from S.
The cardinality of a resolution tree (i.e., the finite number of nodes of the tree) is
denoted by [Tr[.

If x and y are nodes of a resolution tree Tr, and x is a predecessor of y, and a
literal pO occurs in cl(y), then an occurrence ofp in cl(x) is defined to be an ancestor
of the occurrence ofpO in cl(y) in case one of the following sets of conditions holds
Either

(i) x y and 0 is the empty substitution;
(ii) y has a predecessor z in Tr whose immediate predecessors are nodes x

and x; a is the unifier employed in the resolution of cl(x) and cl(Xl);
pa cl(z) is an ancestor of pO in y; p in cl(x) is not eliminated by the resolu-
tion of x and x l.

Note that this defines ancestry even in trees which contain tautologous
clauses.

A resolution tree is said to be in vine-form if, for every node which is not a leaf,
at least one of its immediate predecessors is a leaf. A resolution tree Tr which is in
vine-form is said to be a vine relative to S if Basis (Tr) c_ S. There is one and only
one node of a vine-form tree which has two immediate predecessors, both of
which are leaves. One of these leaves is designated as the top node of the vine-
form tree.

The stem of a vine-form tree, denoted by Stem (Tr), is the ordered set of nodes
which consists of the top node and all of its successors in the tree. The ordering
is that imposed by the precedence relation, and the nodes of Stem (Tr) can be
indexed from 0 to g(Tr).

A resolution tree Tr representing a deduction from S is said to be in ancestry-
filter form (AFF) if it has a vine-form subtree Tr’ (not necessarily representing a
deduction from S) whose root is common with the root of Tr, satisfying the follow-
ing:

(i) For every node Yi e Stem (Tr’), > 0, if x is an immediate predecessor of
Yi, then either cl(x) is a clause of S or else cl(x)= cl(yj) for some
yj e Stem (Tr’), j < i.

(ii) If x is an immediate predecessor of yi e Stem (Tr’) such that cl(x) cl(yj)
where yje Stem (Tr’), then the maximal subtree of Tr rooted at x is
identical to the maximal subtree rooted at yj.

Note that Tr’ is unique, up to isomorphism. Thus the clauses deduced on the
vine-form subtree of an AFF resolution tree form a sequence in which each clause
is a resolvent of the previously deduced clause with either a member of the base
set S or an instance of a clause deduced previously in the sequence.

A clause A is said to be a merge in Tr if A is a resolvent of clauses B and B2

such that B (J P, B2 2 QJ Q, 0 is a unifier of (P, Q), A =/10 U 20,
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and ]A] < I/01 + 1/20[. 2 Thus if there are literals p’e B and q’e B2 such that
p’O q’O, then A is a merge, the literal p’O is said to be a merge literal, and the
node z is said to be a merge node. The merge set of a resolution tree, M(Tr), is the
set of clauses which are merges in Tr.

A resolution tree Tr is said to be a deduction of A from S by resolution with
merging if Tr deduces A from S, and the clause of at least one of the immediate
predecessors of every nonleaf is in S U M(Tr).

3. The ground resolution lemma. In proving many theorems about resolution
trees, it is more convenient to give proofs for ground resolution than for general
resolution. This avoids the question of specifying the substitutions involved, or
of keeping track of factoring of literals. However, the applicability to general
resolution of a theorem proved about ground resolution must always be estab-
lished.

The most important lemma in establishing the generalization of ground
resolution theorems to general resolution is the so-called lifting lemma, given by
J. A. Robinson [11]. One version of the lemma is as follows.

LIFTING LEMMA. Let S be any set of clauses, and Hs be the corresponding
Herbrand universe of terms. If vd is any set of ground instances of clauses in S,
instantiated over Hs, and if Tr(A) is a ground resolution tree deducing A from S,
then there is a ..reslutin tree Tr(A) deducing A,rom S by general resolution, an
isomorphism f’Tr Tr, and for every node Tr, c1(2) is a ground instance of
cl(/).

The completeness of a given refinement can be established by showing that
it is complete for ground resolution, providin we know that the refinement
"lifts"--i.e., that if the ground resolution tree Tr satisfies the refinement condio
tion, then the "lifted" tree, Tr, also satisfies it. For example, if Tr is AFF, then Tr
is also AFF; but the condition between clauses A and B at different nodes of Tr,
"A does not subsume B", need not be true of Tr.

The use of the lifting lemma usually leads to nonconstructive completeness
proofs. That is, the proof does not provide an algorithm for mapping a given
general resolution tree into another one which satisfies the refinement. Without
such a transformation between the general resolution trees, it is difficult to measure
the way in which the refinement affects the complexity of the tree.

Thus we give a lemma which will be needed to obtain bounds on the increase
in complexity of a proof tree which may occur because of the imposition of a
refinement. The lemma is, in a weak sense, the converse of the lifting lemma, for
while it is not true that every deduction by general resolution has an exact counter-
part by ground resolution, we establish the existence of a counterpart which is
related by a subsumption condition.

First, however, we must introduce some additional notation. We shall say
that a clause B is a a-instance of a clause A if B Aa. Composition of substitu-
tions is defined in the obvious way; 0 2 if for all clauses A, AO (A2)z. We
shall say that a substitution 0 is a special case of a substitution , if there is a
substitution 2 for which 0 z2.

Following [3], we use the notation J to indicate the union of sets which are disjoint.
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If a substitution 0 is the result of applying the unification algorithm [10] to
the pair of sets of literals (P, Q), then 0 is said to be a most general unifier (m.g.u.)
of (P, Q), and has the property that any other substitution which unifies (P, Q)
is a special case of 0. If every resolvent in a resolution tree is deduced by employ-
ing a m.g.u, of the pair of sets of literals which are eliminated, we say that it is a
general resolution tree.

We shall also adopt the convention, when dealing with general resolution,
that the variables occurring in each leaf clause shall be distinct from the variables
in any other leaf clause. With this convention, all unifiers in any given resolution
tree can be composed into a single substitution which unifies the literals at every
resolution in the tree. We define a general simultaneous unifier (g..s.u.) recursively
as follows. If Tr is a general resolution tree rooted on z, then 0 is a g.s.u, of Tr if
either"

(i) ((Tr) 0 and 0 e, the empty substitution, or,
(ii) {(Tr) > 0;

z has immediate predecessors Y and y2 and the subtrees rooted on these
nodes have g.s.u. 01 and 02; there is a m.g.u. 0 which unifies sets of
literals from cl(yl) and cl(y2) in the resolution at z; and 0 (01 12 02)0z.

The combination of the g.s.u. 01 and 02 by taking their union (as sets of substitu-
tion elements) is equivalent to the (commutative) composition 0102 because these
two substitutions contain no variables in common.

We also note a property of any substitution 0 which is a m.g.u, or a g.s.u.,
that 00 0.

LEMMA 1. Let Tr be a general resolution tree deducing A from S. Suppose 0 is
a general simultaneous un!fier ofTr, and tr is any substitution which is a special case
of O. Then there is a ground resolution tree Tr’ deducing an instance A’ of A, and
an order-preserving, surjective mapf:Tr Tr’ satisfying

(i) (Vy’ Tr’)(Zly Tr) (y’ fy and cl(y’) cl(y)t),
(ii) A’

_
Ar,

(iii) every leaf clause ofTr’ is -instance of a clausefrom S.
Proof The proof is by induction on the level #(Tr).
Basis step" If #(Tr) 0, then Tr consists of a single node. Let A’ A, and

the lemma is satisfied trivially.
Induction step" Assume the lemma holds for trees of level n or less and

suppose #(Tr) n + 1. Let Y and Y2 be the immediate predecessors of root Tr.
Let B cl(yl) B2 cl(Y2) and 21 and 22 be g.s.u, of Tr and Tr2, respectively.
There are sets of literals, P and Q, such that/1 P, B1 /2 QJ Q,-- B2 and a
substitution 0, 0 e m.g.u. (P, Q), for which A =/10 U/20.

As a consequence of the separation of variables convention, the g.s.u, satisfy
0 (01 U 02)0. Let r 02 for some 2. Then, since 01 U 02 0102 (because
variables are separated) we have tr 010202 and find that cr is a special case of
01 (and of 02, by a symmetrical argument).

Apply the induction hypothesis to Trltr, obtaining Tr], deducing B’1. If
Pr B], then B] /ltr _Atr. To justify the second inclusion, we note that
01 U 02 does not replace any variables which occur in/1, /2 or A. Thus, Atr

A(01 U 02)0,, A02 (/10 [,..J/20)0,-- 10,, .) 20,,, and also
In this case, let A’ B’ and Tr’ Tr’. Let f fl O f’, where fl"Trl Tr’ is
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the map obtained from the induction hypothesis, and f’l has as its domain all
nodes of Tr which are not in Trl, and maps all such nodes into root Tr’.

If Pa
_

B], apply the induction hypothesis to Tr2. If Qa B, then let
Tr’ Tr and choose A’ and fin a similar manner to that given above.

Otherwise, Pa
_

B’I and Qa
_
B2. Since B’I B1, B2 B2, and a is a

unifier of (P, Q), there is an immediate resolvent of B’I and B (requiring only the
empty substitution as a anifier) which is A’. It is evident that A’

_
A.

Let Tr’ consist of the subtrees Tr’ and Try, whose root nodes are immediate
predecessors of root Tr’, and let cl(root Tr’)= A’. Then Tr’ is a resolution tree
deducing A’ from a-instances of clauses from S. Finally let f fl U f2 (3 fo,
wherefl andj are obtained from the hypothesis andfo maps root Tr onto root Tr’.
The construction is complete.

COROLLARY 1.1. If S is any set of clauses, and Tr is a resolution tree deducing
Nil, the empty clause, from S, then there is a ground substitution , and a finite set

ofground clauses S’, each ofwhich is a a-instance of a clause from S, and a ground
resolution tree Tr’ which deduces Nil from S’.

The proof follows immediately from Lemma by choosing the instantiating
substitution, , to produce a ground instance of every leaf clause in Tr.

The instantiation lemma (Lemma 1), together with the lifting lemma provide
us with a chain of transformations" instantiate an arbitrary resolution tree to a
ground resolution tree, transform this to a ground tree satisfying a refinement,
and then lift the result back to a general resolution tree satisfying the refinement.

It is of great practical importance to know whether or not a specific refine-
ment strategy may actually increase some measure of the complexity of a proof.
Typical complexity measures used in automatic deduction include the level of a
resolution tree, the maximum number of literals in a clause, and the maximum
depth of function nesting in any term. The maximum depth of function nesting
is a particularly crucial measure of complexity, as it restricts the size of the subset
of the Herbrand universe within which a proof may be found.

We can immediately give bounds on the depth of function nesting in the
instantiated tree Tr’, in terms of the maximum depth of nesting in Tr.

COROLLARY 1.2. Let Tr(A) deduce A from S by general resolution. Suppose
((Tr) n, d is the maximum depth offunction nesting in the leaf clauses of Tr, and
d’ is the maximum depth offunction nesting in any term ofa unifier in Tr. Then there
is a ground resolution tree Tr’(A’) deducing an instance A’ of A from S’, a finite set

ofground instances of the clauses of S, and the maximum depth offunction nesting
in the clauses of S’ is nd’ + d.

Proof Assume Tr has the g.s.u. 0 and let a 02, where 2 replaces all variables
in Tr that are not replaced by 0, by the constant a. Applying Lemma 1 to Tr,
a yields a ground tree, Tr’. We claim that Tr’ satisfies the corollary.

First we study the nesting depth in 0. Let u be a level k + node in Tr. Suppose
nodes v and w are the immediate predecessors of u, and that kd’ is an upper bound
on the depth of nesting offunctions in the terms of0 and 0 Now, 0,
where 0, is the unifier at u. Therefore the terms in 0, cannot have a depth of nest-
ing greaer than (k + 1)d’. Thus, by a simple induction, the depth of nesting in 0,
and hence in 02, is bounded by nd’. This implies that the nesting in Tr’ is bounded
by nd’ + d, which completes the proof.
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We shall make further use of this corollary to establish a bound on the
increase of depth of functional nesting which may be required by the ancestry-
filter refinement strategy.

4. Compatability of the ancestry-filter and resolution with merging refinement.
In this section we sketch a procedure for constructing, from an unrestricted resolu-
tion proof tree, a new proof tree which satisfies the restrictions of the ancestry-
filter and resolution-with-merging refinements. The construction could be the
basis for a proof of compatibility of the refinements, although such a proof is not
given here.

CONSTRUCTIOY. Let Tr be a ground resolution tree deducing a clause A from
a basis set S. Let w be any leafnode ofTr. We wish to construct a ground resolution
tree Tr’ deducing a clause A’ from S’, and having the properties:

1. A’A;
2. Tr’ is AFF and if w’ is the top node of Tr’, then cl(w’) cl(w);
3. if Yi is in Stem Tr’ and a node x is resolved with Yi in Tr’, then cl(x)

S U mi(Tr’).
The condition,,; imply that Tr’ satisfies both the AFF and the resolution-with-

merging refinements.
The construction is described as a recursive procedure. In order to guarantee

a termination condition for the recursion, let us introduce the artifice of node-
marking in the proof tree to which we shall apply the construction. Let St be the
largest subtree of Tr which has top node w and which satisfies conditions 2 and 3.
St cannot be empty since it contains at least the subtree consisting of w alone.
Initially, let all nodes of Tr which are not also in St be marked, as indicated by
check marks in Fig. 1.

Tr:B Tra :B
Tr:A

FIG 1.

Either the proof tree is in the desired form, or its root node is among those
marked. Suppose the latter, and let Y .and Y2 denote the immediate p.redecessors
of root Tr. Suppose el(y1)= B1 B’I U {---p} and cl(y2)= B2 Bz U {p}, with

[Pl the atom resolved upon, and A B’ U Bz. Let Tr and Tr2 be the largest
subtrees rooted on Y and Y2 respectively, and suppose w is in Trl. Apply the
construction recursively to Trx, obtaining Tr’ which deduces B1, where B1

_
B

and conditions 2 and 3 are satisfied. Note that Trl contained fewer marked nodes
than did Tr, since root Tr was marked and was not in Try. Thus the recursion is
guaranteed to terminate.

It remains to show how to append Tr’ to Tr2 in such a way that the resulting
tree will either satisfy conditions 1-3 or will allow another application of the



REFINEMENTS OF THE RESOLUTION PRINCIPLE 321

recursive construction. Since 1 B1, it is either true that/1 - B’I, in which case

Tr’l satisfies conditions 1-3, or else/1 =/’1 0 {---p}, and we must do more work.
There will be at least one node x, a leaf of Tra, whose clause contains an

occurrence of p which is an ancestor of p in cl(y2) as indicated in Fig. 2. We shall

w ,I J

Trt: gl Trz: ga
FG 2.

append a copy of Tr’ to Tr2 at the leaf x, in order to put the top node w of Tr’l
at the top of the resulting deduction. Note that all nodes of Tr2 are marked.

Let D D’ 0 {p} cl(x) and note that D e S. Pare away from the clauses
of Tr2 the occurrence of p in D and all occurrences of p in other clauses of Tr2
when these occurrences have p in D as their unique leaf-ancestor. No change in
the structure of Tr2 occurs, since the occurrences of p which disappear are never
resolved upon in Tra. Call the result Trz, deducing /2 from S U {D’}, with
B2 B2

Next, let us add onto cl(x) the clause B as obtained from Tr’. The literals
of B’I are carried on down the proof tree, allowing elimination by resolution of
any literals from B’ which happen to merge with a literal of Tr’2 which is resolved
upon. The resulting tree we call Try, and it deduces a clause C, where C _/’1 U/2,
from a basis set S U {/’1 U D’}.

W ,,X: D

,I ,17 xj: ’u D’

Tr :c

FIG 3.

Now let us modify Tr’l slightly at its root, by adding a new leaf x’ with
cl(x’) D, to be resolved upon the atom ]Pl with root Tr’l, producing a new root
node z. We call the extended tree Trl; it deduces B’I U D’ from S, and satisfies
conditions 2 and 3. Replace the leaf node x of Tr’ by the entire subtree Trl, and
we have Tr (see Fig. 3), a new resolution tree deducing C from S. The added sub-
tree with root x clearly satisfies conditions 2 and 3 so that no new marked nodes
have been introduced. Thus Tr contains fewer marked nodes than Tr. We may
apply the recursive procedure to r to construct rl which deduces and
satisfies 2 and 3.

It may seem that we should now be nearly done, but this may not be the case.
For, since (

_
C __%_/’1 U /2 B’I U B2, it may be the case that still contains
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the literal p. (If not, then C
___
A and we can skip the next step.) To eliminate this

occurrence of p from cl(root r 1), we will extend r in such a way that condition
3 remains satisfied. Recall that Tr’l was a tree satisfying conditions 2 and 3 and
which deduces /1. (/1 contains ---p, or else the construction terminated with
Tr’ Tr’.) From this tree, prune away all proper ancestors of any node whose
clause is a merge in Tr’. We obtain a deduction tree which deduces/1, from
S U {M(Tr’)}, and the deduction contains no merges. Call this tree Tr3.

Since Tr3 contains no merges, it has a unique leaf node u, with clause E,
containing an instance of---p which is an ancestor of the occurrence of---p in
cl(root Tr3). It is not difficult to show that a merge-free vine form tree can be re-
ordered to form a new vine-form tree having a prescribed node at the top, and
that the clause deduced is a subset of the original clause. Thus we obtain Tr (as

u:E

Try: B
FIG 4.

shown in Fig. 4), a vine form tree having E at the top, and deducing B1 from
S U M(Tr’I) where B1 -/1.

Using the same procedure we used to join Tr’l to a leaf of Try, we now
replace the~leafu ofTr’3 by Tr 1, resolving upon IPl at the base ofTr ,using the clause
E. We get Tr’ (shown in Fig. 5), which deduces C’ from S U M(Tr’) and C’ A.

X’ .t/U D

rc
FIG 5.

Tr’ satisfies the conditions. For general proof trees we must apply Lemma 1, the
above construction and finally the lifting lemma as outlined in 3. This completes
the description of the construction procedure.
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As a direct consequence of the construction, we can give the following result.
LEMMA 2. If there is a ground resolution tree Tr deducing A from S, and for

every nonleaf node ofTr, at least one of the immediate predecessors contains a unit
clause, then there is a ground resolution tree Tr’, deducing A’from S, and satisfying
the conditions 1-3, and Tr’ is a vine.

Proof. Since Tr describes a unit proof, no clause in Tr contains a merge.
Thus the leaf-ancestor of each literal in Tr is unique, and it is always the case,
referring to the details of the construction that ff

_ , and that the construction
terminates with Tr’ Tr’ and without the addition of the "tail" Try. Since this
last step is the only point at which any clause from M(Tr’), the set of merges, can
be resolved with a clause on the stem of Tr’, the fact that this step is unnecessary
means that the construction produces Tr’ as a vine.

5. Bounds on the complexity increase of proof trees using refinement strategies.
We now give some results on the increase in complexity which may be required
when the AFF or the resolution-with-merging refinements are employed.

THEOREM 1. Let Tr be a resolution tree oflevel n deducing a clause Afrom a basis
set S; let B be a distinguished clause of S. Then there is an AFF resolution tree Tr’
deducing A’ from S, where A’ subsumes A, and:

(i) Tr’ has top node w; either el(w) B or else B Basis (Tr’);
(ii) f(Tr’) fl(n), where fi is the function defined recursively by

L(o) o,
f(1) i,

fl(n + 1)= 2(fx(n + 1), n>l.

Furthermore,for each n, there is a set ofclauses S and a clause A such that A R"(S),
but no AFF deduction of A’, A’

_
A, is possible with level less than f(n).

Proof To show thatf(n) is a bound we use induction on n. The basis step for
n 0 or n is obvious. Assume the bound to hold for deductions of clauses
in R"(S) and suppose A R"+ (S). Then root Tr has two immediate predecessors,
y and Y2, and cl(y. 1), cl(y2) ff R"(S).

Let B B’I U {p} cl(yl)and B2 B {---,p} cl(y2). There is an AFF
tree Tr’ deducing where

_
B, and having the prescribed top-node clause

(if not, interchange y with Y2 and try again). The level ofTr’ is bounded byfl(n),
by hypothesis. If p /1, then/ subsumes A, and the theorem is satisfied. Assume
this is not the case. Then there is an AFF deduction of 12, where J2 B2, by a tree

Tr in which the clause of the top-node of Tr contains --p. By the construction
of 4 we append an extra node to Stem (Tr’) and an extra leaf whose clause is the
same as the top node clause of Try. Call the newly formed tree Tr’ and note that
(Tr’) <_ f(n) + 1.

Now we delete from the clauses ofTr all literals ---p whose sole leaf-ancestor
is --p in the top node, and append the clause/ {p} to the top node of Tr
forming Try. These operations do not increase the level. Next, we replace the top
leaf ofTr by the entire tree Tr’, obtaining Tr". It is seen that (Tr") =< 2fl(n) + 1.

Finally, if p e cl(root Tr"), then we must resolve root Tr" with the root of a
copy or Tr’ to eliminate p. This adds a new node to the stem of Tr", increasing
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its level by one.. The resulting tree is Tr’, and/(Tr’) < 2(fl(n) + 1), and the bound
is proved.

To prove that the bound is the best possible, consider the symmetric set of
2" tautology-free clauses of n literals each, which is formed by taking all non-
tautologous combinations of positive and negative instances of n atoms. This set
is inconsistent, and has a deduction of Nil in level n by unrestricted resolution.
A deduction of Nil by the AFF refinement requires a level offl(n). This completes
the proof.

We note from the example which assures us that the bound is the best possible,
that a better bound cannot be found if we relax the condition of the theorem
which allows us to specify the distinguished clause B as the clause of the top node.
The same is not true of the level bound when resolution-with-merging is combined
with AFF, however. Then, if the choice of top node is unrestricted, the bound is
the same as is given by Theorem 1. However, if the choice of top node is restricted
to a distinguished node (or set of support), then the best bound we can prove is
defined by the function f2:

f:(0) 0,

f2(1) 1,

fz(n + 1)= 3fz(n + 2.

It is not known that fz(n) is the best possible level bound for resolution-with-
merging in AFF with set-of-support, but it is known that f(n) is not a bound for
this composition of refinements. As an example, consider the set of ground clauses

Q,R

--Q, P

Q,

from which there is a level 2 deduction of Nil. With unrestricted choice of the top
node, there is a level 3 deduction of Nil satisfying the conditions 1-3 of 4, but if
the clause of the top node is required to be -R, then the shortest such proof is of
level 5, which is f2(2).

We now turn our attention to obtaining a bound on the increase in depth
of functional nesting, which in practice, is more crucial than the increase in level
associated with a refinement.

THEOREM 2. If A is deduced from S by a general resolution tree Tr, and if no
literal ofthe clauses appearing on Tr hasfunctional nesting to a depth greater than d,
d’ is the maximum depth offunction nesting in any term of a unifier in Tr, and
#(Tr) n, then there is a tree Tr’ in AFF (or AFF with resolution with merging and
set of support) deducing A’ from S, A’

_
A, and no literal occurring in any clause

appearing on Tr’ has depth offunctional nesting greater than nd’ + d.
Proof The proof follows directly from Corollary 1.2, the construction of

4 and the lifting lemma.
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Furthermore, it appears that a bound of nd’ is tight. An example for d 1,
d’ 1, n 2 is given by the following inconsistent set of clauses:

(A1) P(fx), Q(x,fy).
(a2) -P(fx), Q(x,fy),
(a3) P(fx), Q(fy, x),
(A4) ---4’(fx), Q(fy, x),

where f is a unary function symbol. There is obviously a level 2 deduction of Nil,
and the depth of functional nesting is i.e., no deeper nesting occurs than already
exists in (A1)-(A4). But an AFF deduction ofNil from the same set is the following:

(1) P(fx), Q(x,fy) (A1)
(2) ---dz’(fx), Q(x,fy) (A2)
(3) Q(x,fy) R(1, 2)
(4) P(fx),--Q(fy, x) (A3)
(5) P(ffy’) R(3, 4)
(6) -nP(fx),--nQ(fy, x) (A4)
(7) --Q(fy,fy’) R(5, 6)
(8) Nil R(3, 7)

In clause (5), the term ffy’ appears, which has depth of functional nesting equal
to 2. An example for d 1, n 3 is easily obtained, forming (AI’)-(A4’) from
(A1)-(A4) by appending the new literal R (x, y, fz), and forming (A5’)-(AS’) by
appending ---dC(fz, y, x) to (A1)-(A4) above. An example for any n can be formed
inductively from our example for n 2. If S, is an example for n, in which the
variables are x l, ..., x,, then form S,+ as follows. Let P(xl,"’, x,, fx,+l) be
a new literal, and from it form another literal consisting of P followed by an odd
permutation of the terms (xl,’", x,,fx,+l). Let one of the new literals be
negated and the other be positive. Let S,+ be the set of all clauses formed by
appending one of the new literals to a clause of S,. Obviously, S,+1 is incon-
sistent; however, we conjecture that there is no proof of the inconsistency in AFF
within a nesting bound of n.

6. Examples of proofs. The increase in complexity of the AFF with merging
proof trees discussed in 5 leaves the practical value of these refinements open to
doubt. The situation would seem to be a simple "trade-off" between generating
fewer resolvents at any level and having to search deeper levels of the set of all
resolvents for a proof.

An on-line interactive theorem-proving program has been constructed3 which
makes available to the user all of the refinements discussed above (set-of-support,
model-relative deduction, ancestry-filter form, resolution-with-merging) and
some others as well. (For a full description of the program see Allen and Luckham
(1970).) When the program is started, the user can choose which refinements and
editing strategies he wishes to apply to a particular problem, and he may alter his
choice at any time during the search for a proof. This facility allows the user to
take advantage of his own experience with the class of problems he is working on,

At the Stanford University Artificial Intelligence Project.
Note added in proof The experiments described here were made in 1969 the current 1973 program

is twenty times faster.
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and it also gives us an easy way to compare the performances of various combina-
tions of refinements.

As a result of our own experience with a variety of problems in elementary
algebra and number theory we can make the following comments. The two most
effective of these refinement strategies are model-relative deduction and ancestry-
filter form. For almost all problems there seems to be a choice of model (and a
very simple model) such that deduction relative to that model greatly reduces the
number of irrelevant deductions and is often a crucial factor in obtaining a proof.
The ancestry-filter refinement has yielded some striking results. It has been very
simple problems with short proofs (level 5 or 6) that show unfavorable statistics
under the AFF condition. Essentially, the AFF condition imposes a strong
restriction on the growth of the number of deductions generated as a function of
level. In many examples this seems to be linear. For more difficult problems (where
the shortest proof tree has level 9 or 10, say, or the proof depends on deriving a
preliminary lemma) it usually pays to search the extra levels with the AFF refine-
ment. Even in cases where it turns out that more deductions are retained under
the AFF refinement, it often happens that far fewer deductions are generated, so
that the deeper AFF proof tree is obtained faster than the shorter trees because
much less time is spent on editing computations (e.g., see Table 1, Examples 2 and 3).
Also, the refinement has appeal as a natural heuristic. Many human proofs satisfy
AFF a point at which a resolvent of nonaxiom clauses is computed corresponds
intuitively to using a previously proved lemma. The conjunction of model-relative
deduction and AFF, although incomplete in general, is very effective. If AFF is
used without model-relative deduction, it is important to use the set-of-support
strategy in conjunction with it to reduce the level deductions. Resolution-with-
merging does not seem to be nearly as effective as the other two refinements, and
we almost always use it in conjunction with at least one other strategy.

The following three examples will serve to illustrate most of the above com-
ments. While not entirely trivial, these examples seem to us typical of the sort of
problem mathematicians would prefer to leave to the machines.

A ternary Boolean algebra (TBA), defined by A. A. Grau (1947), is a system
consisting of a set S and two operations under which the system is closed, one
ternary, (x y z), and the other unary, x’, satisfying the following axioms:

A1. (x y (u v w)) ((x y u) v (x y w))

A2. (yxx)=x,

A3. (x y y’)= x,

A4. (xxy)=x,

AS. (y’ y x)= x.

In a recent abstract in the Notices of the American Mathematical Society,
Chinthayamma (1969) announces without proof that Grau’s axioms A1-A3 are
sufficient to define a TBA, and that they are also independent, and some new sets
of axioms are given.

The program has been used to establish all of the dependence results an-
nounced in [4], by employing the simple refinements we have been discussing.
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Examples 1 and 2 below are typical illustrations of the sort of proof involved, and
how the refinements affect the performance of the program (Table 1).

TABLE

(See textfor notation.)

Refinement strategies

Example
1. M /X Merging A AFF
2. Support A Merging A AFF
3. M A Merging
4. Support A Merging

Example 2
5. M A Merging A AFF
6. M A AFF
7. M A Merging
8. Support A Merging A AFF

Example 3
9. M A Merging A AFF

10. Support A Merging A AFF
l. M A Merging

Generated

2036
2372
4106
4500

984
984
2620
5390

1558
2569
12493

Clauses

Retained

367
534
439
544

226
226
432
546

376
518
975

Time

490 secs.
661 secs.
922 secs.
run stopped

280 secs.
280 secs.
958 secs.
1202 secs.

572 secs.
run stopped
run stopped

Proof level

8
8
8

5 (no proof)

10
10
8
10

14
4 (no proof)
10 (no proof)

Example 1. Derive Grau’s axiom A5 from axioms A1-A4.
Using the conjunction of AFF and resolution-with-merging and model-

relative deduction (relative to the model of all negative literals) the program
generates the proof below in about 8 minutes:

x (x y y’) A3

(x y (y’ y’ y)) A4

((x y y’)y’ (x y y)) A1

(x y’ y) A3 and A2 (lemma)

(x y’ (y’ y y)) A2

((x y’ y’ y (x y’ y)) A1

(y’ y x) A2 and lemma.

In [4] Chinthayamma gives the following alternative set of axioms for TBA:

B1. (y x x)= x,

B2. (y’ x y)= x,

B3. ((y u v) (x v u) z) (y (v u z) (x v u)).

Example 2. Derive (y x y’)= x (Grau’s Theorem 3.5 in [5]) from Axioms
B1-B3.



328 RICHARD B. KIEBURTZ AND DAVID LUCKHAM

The proof of (y x y’) x from Axioms (A) given in [5] uses the theorem
(x’)’ x, which in turn is proved using the lemma (x y’ y)= x (see Proof of
Example 1). When all of the elementary refinements are used in conjunction, the
program generates a proof in under 5 minutes (a formal language print out of the
proof is given in the Appendix):

(y x z)= (y’ (y x z) y) B2

(y’ (y x z)(x’ y x) B2

((y’ x y)(x’ y x) z) 33

=(xyz) B2 (Lemma 1)

.’. x=(xy’y) Lemma and B2 (Lemma 2)

(x (y y’ y’) y) B1

((x y’ y)y y’) 3

=(xyy’) Lemma 2 (Grau’s (A3))

(y x y’) Lemma 1.

Thus the AFF proofs found by the program are very natural. Generally the
user can easily pick out the "interesting looking" deductions that play the role
of lemmas, when they first appear on the on-line console (see e.g. lines 21, 17 and
3 in Example 2 of the Appendix). It is possible for the user to direct the program
to pay special attention to these deductions, although this was not done here.

The final example is from elementary group theory.
Example 3.4 Let K be a system consisting of a set S and a binary operation

defined on S. If K is closed and associative and has an element e such that e2 e,
and every element in S has a left inverse with respect to e and at most one right
inverse with respect t6 e, then K is a group.

The problem here is to prove that e is a left identity element. When all of
the refinements are used, the program generates a level 14 proof from a set of 16
axioms (see Appendix) in 91/2 minutes. If either model-relative deduction or the
AFF condition is dropped, the computation time required to find a proof becomes
impractical even though a level 11 proof can be found using model-relative
deduction alone. The formal proof in the Appendix is easily translated into natural
notation.

Table gives the results of some experiments with the three examples. M
denotes deduction relative to the model consisting of all negated literals "Merg-
ing" denotes resolution with merging; "Support" denotes the use of the negation
of the theorem to be proved as the set of support. The editing bounds were fixed
throughout to exclude clauses of length greater than 4, and terms with a depth of
nesting of function symbols greater than 2.

Appendix. Below are the formal axioms and proofs for Examples 2 and 3;
both proofs were obtained using the conjunction of all three elementary refine-

This problem was suggested by Dr. L. Wos.
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ments (i.e. lines 5 and 9 of Table 1). The disjunction connective is omitted from
the clauses.

The proofs are printed out in reverse order. Each line is followed by numbers
indicating the lines from which it was derived. Also the proofs tend to look more
complicated than they are because the derivation of a lemma is printed out each
time the lemma is used in the proof.

Example 2. Interpret P (X, Y, Z, W) as (x, y, z) w and c(x) as x’.
Axioms.
1. P(X2 X1 X1 X1); axiom B1

2. P(C(C2) X1 X2 X1); axiom B2

3. --(X2 X4 X5 X6)--(X1 X5 X4 X7)
---P(X5 X4 X3 X8)--(X6 X7 X3 X9)P(X2 X8 X7 X9);

axiom B3
4. --uP(X2 X4 X5 X6)--uP(X1 X5 X4 X7)
-P(X5 X4 X3 XS)--P(X2 X8 X7 X9) P(X6 X7 X3 X9);

negation of
Grau’s
Theorem
3.5.

Proof
NIL 2

1. P(X1,X13,C(Xl(,X13) 3 4
2. ---P(A,B,C(A),B) AXIOM 5
3. P(X13,X1,C(X1),X13) 5 6
4. P(X ,X2,X3,X11 P(X2,X ,X3,X11 7 8
5. P(X13,X2,C(XZ),X13) P(XIO,X2,C(XZ),X2) 9 10
6. P(C(XZ),X1,XZ,X1) AXIOM 2
7. P(X6,X1,X3,Xll)P(X1,XZ,X3,Xll)--P(C(X1),X2,X1,X6)11 12
8. P(C(XZ),X1,X2,X1) AXIOM 2
9. P(X1,X12,X3,X1) --P(XZ,C(X2),X3,C(X12)) P(XIO,XZ,C(XZ),XI2)

13 14
10. P(X2,X1,X1,X1) AXIOM 1
11. P(X6,X2,X3,X1) --(X5,X4,X3,X1) --P(X O,X5,X4,X2) --P(C(X2),

X4,X5,X6) 15 16
12. P(C(X2),X1,X2,X1) AXIOM 2
13. P(X6,XZ,X3,X1)---(X5,X4,X3,C(X2))--P(XIO,X5,X4,X2) ’(X1,

X4,X5,X6) 17 18
14. P(X1,C(XZ),X2,X1) 19 20
15. P(X6,XV,X3,X9) --(X2,X8,XV,X9) --P(X5,X4,X3,X8) P(X1,X5,

X4,X7) --d:’(X2,X4,X5,X6) AXIOM 4
16. P(C(X2),X1,X2,X1) AXIOM 2
17. P(X1,C(X2),X2,X1)21 22
18. P(X6,XV,X3,X9) --(X2,X8,XV,X9) --P(X5,X4,X3,X8) ---P(X1,X5,

X4,X7) --(X2,X4,X5,X6) AXIOM 4
19. P(X1,X2,X3,Xll) ---P(X2,X1,X3,Xll) 23 24
20. P(C(X2),X1,X2,X1) AXIOM 2



330 RICHARD B. KIEBURTZ AND DAVID LUCKHAM

21. P(X1,X2,X3,Xll) P(X2,X1,X3,Xll) 25 26
22. P(C(X2),X1,X2,X1) AXIOM 2
23. P(X6,X1,X3,X l) -P(X1,X2,X3,X l) --d:’(C(X1),X2,X1,X6) 27 28
24. P(C(X2),X1,X2,X1) AXIOM 2
25. P(X6,X1,X3,Xll)-nP(X1,X2,X3,Xll)-P(C(X1),X2,X1,X6) 29 30
26. P(C(X2),X1,X2,X1) AXIOM 2
27. P(X6,X2,X3,X1) -M:’(XS,X4,X3,X1) -P(XIO,XS,X4,X2) --’(C(X2),

X4,XS,X6) 31 32
28. P(C(X2),X1,X2,X1) AXIOM 2
29. P(X6,X2,X3,X1) --P(XS,X4,X3,X1) -(XIO,XS,X4,X2) --(C(X2),

X4,X5,X6) 33 34
30. P(C(X2),X1,X2,X1) AXIOM 2
31. P(X6,X7,X3,Xg) --F’(X2,X8,X7,Xg) ---(X5,X4,X3,XS) --(X1,XS,

X4,X7) -P(X2,X4,X5,X6) AXIOM 4
32. P(C(X2),X1,X2,X1) AXIOM 2
33. P(X6, XT, X3, X9) --P(X2,XS,XT,X9) -(XS,X4,X3,X8) --P(X1,XS,

X4,X7) P(X2,X4,XS,X6) AXIOM 4
34. P(C(X2),X1,X2,X1) AXIOM 2
QED

Example 3. Interpet P(x y z) as the predicate defined in terms of binary opera-
tion by (x y) Z, G(x) as the left inverse of x with respect to E, R(x, y) as x y,
and F(x, y) as the binary operation.

Axioms.
1. P(X1 X2 F (X1 X2));

2. P(E E E);

3. P(G(X1) X1 E);

4. --,P(X1 X2 X3)---tP(X2 X4 X5)--P(X1 X5 X6).P(X3 X4 X6);

5. --(X1 X2 X3)--(X2 X4 X5)--(X3 X4 X6) P(X1 X5 X6);

6. ---,P(X1 X2 E)--00(X1 X3 E) R(X2 X3);

7. R(X1 X1);

8 --P(X1 X2 X3) ---uo(X1 X2 X4) R(X3 X4);

9. --,R(X1 X2) -R(X2 X3) R(X1 X3);

10.--.R(X1 X2)-q:’(X1 X3 X4)P(X2 X3 X4);

11. -R(X1 X2) --,P(X3 X X4) P(X3 X2 X4);

12. --R(X1 X2)--P(X3 X4 X1) P(X3 X4 X2);

13. ---.R(X1 X2) R(F(X1 X3) F(X2 X3));

14. -R(X1 X2)R(F(X3 X1)F(X3 X2));

15. --R(X1 X2) R(G(X1) G(X2));

16. --(E A A);
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Proof
NIL 2
1. P(E,XZ,X2) 3 4
2. --d(E,A,A) AXIOM 16
3. P(X3,X4,X1) -(X3,X4,F(E,X 1)) 5 6
4. P(X1,XZ,F(X1,X2)) AXIOM
5. R(F(E,X1),X1) 7 8
6. P(X3,X4,X2)--R(X1,X2) -P(X3,X4,X1) AXIOM 12
7. R(F(E,X1),X3) P(G(X1),X3,E) 9 10
8. P(G(X1),X1,E) AXIOM 3
9. P(G(X1),F(E,X1),E)11 12

10. R(XZ,X3) --(X1,X3,E) ---P(X 1,XZ,E) AXIOM 6
11. P(XI,F(E,X2),X6)--P(X1,X2,X6) 13 14
12. P(G(X1),X ,E) AXIOM 3
13. P(X1,E,X1)15 16
14. P(XT,F(X1,X2),X6)-P(Xa,X2,X6)---P(XT,X1,X3) 17 18
15. P(xa,x4,x1) --(X3,X4,F(X1,E)) 19 20
16. P(X1,X2,F(X1,X2)) AXIOM
17. P(X1,XS,X6) --tP(X3,X4,X6) -P(X2,X4,XS) -P(X1,X2,X3)

AXIOM 5
18. P(X1,X2,F(X1,X2))AXIOM
19. R(F(X1,E),X1)21 22
20. P(xa,x4,x2) R(X1,X2) --(xa,x4,x1) AXIOM 12
21. R(F(X1,E),X3) --(G(X1),X3,E) 23 24
22. P(G(X1),X1,E) AXIOM 3
23. P(G(X1),F(X1,E),E)25 26
24. R(X2,X3)--4(X1,Xa,E) --(X1,X2,E) AXIOM 6
25. P(XT,F(X1,E),E) ---(XT,X 1,E) 27 28
26. P(G(X1),X1,E)AXIOM 3
27. P(X7,F(X1,X2),X6) --P(Xa,X2,X6) ---P(X7,X 1,X3) 29 30
28. P(E,E,E) AXIOM 2
29. P(X1,XS,X6) --aP(Xa,X4,X6) -P(X2,X4,XS) --P(X1,X2,X3)

AXIOM 5
30. P(X1,X2,F(X1,X2)) AXIOM 1
QED
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REAL-TIME STRICT DETERMINISTIC LANGUAGES*

MICHAEL A. HARRISON? AND IVAN M. HAVEL:

Abstract. The family of strict deterministic languages has been studied for its theoretical properties
and applications to parsing. In particular, these languages have been shown to be precisely the prefix-
free deterministic languages. Deterministic pushdown automata are called (quasi-)real time if they
have no (only a bounded number of consecutive) null moves. It is shown that for strict deterministic
languages, the quasi-real-time and real-time constraints are equivalent (except for {A}). A grammatical
characterization of these languages is also given. For quasi-real-time strict deterministic languages, an

easy and elegant decision method is given for testing regularity. For all known methods of accepting
deterministic languages, it is shown that the families of real-time languages are a proper subset of the
full families. A relation is established among these sets, the simple deterministic languages, and some
hierarchies.

Introduction. Characterizations of languages by automata are of particular
importance for applications such as parsing. When one has an important family
such as the deterministic context-free languages [8], [13], [14], [15], [17] one
wishes to examine acceptance quite closely and ask if placing restrictions of one
kind or another on the device affects the family of languages accepted. Such
questions generally lead to interesting results because if restrictions lead to a
proper subfamily we can examine the implications of the restrictions. On the
other hand, if no loss of generality results from the restriction, we may have found
a condition which either simplifies description or proofs. There are many possible
ways to restrict the action of an automaton. It is possible to restrict memory
capacity, computational ability, the time of computation, or the organization of
memory.

In the present work, our interest is the continuing investigation of strict
deterministic languages [14], [15]. It has been argued in (and by) [14], [15] that
these languages provide an interesting family and an important technique for
studying the full family of deterministic context-free languages.

In [14], the effect of limiting memory size in the family of accepting automata
was investigated. This led to an infinite hierarchy of strict deterministic languages.
Our goal in the present paper is to examine the effect of limiting computation
time. This will be done by limiting the number of consecutive A-moves. This
restriction is an essential one in that it changes the family of acceptable languages.
We shall be able to characterize the new families grammatically.

The present paper consists of this Introduction and three other sections.
In 1 some of the basic definitions concerning strict deterministic grammars are

* Received by the editors June 30, 1972, and in revised form September 22, 1972. This research
was supported by the National Science Foundation under Grant GJ-474.
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10TIA, Vyehradskfi 49, Praha 2, Czechoslovakia.
Many restrictions have been studied in the literature in both the deterministic and nondetermin-

istic cases (cf. [5], [9], [11], [12], [14], [18], [19], [20]).
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recalled. We also give some constructions which were used in [14] and which are
needed in our proofs.

In 2, (quasi-)real-time computation is introduced and it is shown that for
strict deterministic languages, quasi-real-time is equivalent to real-time (except for
(A}). A grammatical characterization of such languages is presented. An applica-
tion of these ideas is given to testing if such a set is regular. There is a very simple
algorithm in this case as opposed to the general case [22]. Using these ideas, it is
shown that in all types of deterministic acceptance, the family ofreal-time languages
is a proper subset of the full family of deterministic languages.

In 3, the simple deterministic languages of [18] are connected with strict
deterministic languages through a hierarchy established in [14] and through the
results derived here.

In the remainder of this section, we introduce our notational conventions.
Consult [14] for any notation not defined here. Let X be a set. A partition of X is a
collection 7r {X1,X2, o..} of nonempty mutually disjoint subsets X X
such that X U Xi. Subsets X are called blocks of partition

There is a natural correspondence between partitions and equivalence
relations on X" if z corresponds to an equivalence _=, then x y if and only if x
and y are in the same block of r. In such a case we write either (mod 7r) for --, or
X for

Let 7r X/-- and 72 X/ 2. We define

71 2 if and only if =z-
The set of all partitions on X together with the operations meet and join forms a
lattice of partitions of X.

Functions are defined as functional relations together with their domains and
ranges using the notation f:X Y or X Y. We shall often deal with partial
functions corresponding to single-valued relations. We use the notation f: X -Op Y
or X p Y for partial functions.

An alphabet is any finite nonempty sets of objects, called letters. We assume
that all alphabets are considered as subsets of a fixed infinite set of letters, say
(we will not usually mention this set explicitly).

In our constructions we shall often need special auxiliary alphabets whose
letters correspond to certain given objects. To make these constructions uniform we
formally define for any given finite nonempty set X a special new alphabet Alph (X)
by means of a fixed injection X -o f’x 2, i.e.,

Alph (X) {[x e X}.
By convention we always assume that any alphabet of this form is disjoint from
other alphabets in the particular context if they were introduced independently.
When X is itself an alphabet, the Alph operator produces a new copy of X.

Let u, v e A* be two strings. Then u is a prefix of v ifand only if v uw for some
w e A* when w : A, u is a proper prefix of v. We denote by lg (w) the length of w,
i.e., the total number of occurrences of letters in w, in particular, lg (A) 0. For
any n >= 0,

t")w is the prefix of w with length min (lg (w), n).
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A language L A* is said to be prefix-free if and only if

weL and wueL impliesu=A.

Next we review some basic concepts concerning formal grammars.
DEFINITION. A context-free grammar (hereafter a grammar) G is a 4-tuple

(1) G (V,E,P,S),

where V and E are two alphabets, E
___
V (letters in E and in N V E are called

terminals and nontertninals respectively), S N and P is a finite relation, P
_
N

V* (the set of productions).
By convention2 we write "A a is in P," or sometimes only "A a,"

instead of "(A, a) s P." We also write "A a xlaz]""" ]a," instead of "A a and
A- a2 and.., and A a," (here "1" is a metasymbol not in V). Where the
reference to G is important we write a instead of .

DEFINITION. Let G be a grammar of the form (1). We define a relation_
V* x V* as follows. For any a, fie V*,a fl if and only if a alAa2,

fl alflla2 and A fll is in P for some A 6 N and al, a2, fll V*. In particular, if
a E* or az Z*, we write a :::L or a :::R fl respectively. Any a V* is called a
(canonical) sentential form if and only if S =* a (S =, a).

The language generated by G is the language

(2) L(G) {w X*]S =* w}.
Two grammars are called equivalent if and only if they generate the same language.

Note that in (2) relation * can be replaced by = or by t.

1. Background of strict deterministic languages. In [14], [15] the family of
strict deterministic languages was introduced and was used to obtain a number of
important results. Our current results will require [14] and [15] as prerequisites.
To aid the reader of this paper, we restate some of the basic definitions. In some
cases, we reproduce important constructions which were previously used since
some of the current proofs require them. The present discussion is abbreviated
and [14] and [15] contain considerably more detail.

We begin with the key definition.
DEFINITION 1.1. Let G ( V, Z, P, S) be a grammar and let n be a partition

of the set V of terminal and nonterminal letters of G. Such a partition n is called
strict if and only if

(a) Z e n, and
(b) for any A, A’ 6 N and a, fl, fl’ e V*, ifA - aft, A’ - aft’ and A -= A’ (mod n),

then either
(i) both fl, fl’ - A and3 l)fl l)fl, (mod n) or
(ii) fl fl’= A and A A’.

We adopt certain preferences in usage of symbols. When talking about grammars we use symbols
A,B, C,... for elements of V or N; a,b, c,... for elements of E or YA E U {A}; a, fl, ,... for
elements of V* and u, v, w, for elements of E*.

Equation numbers are used when reference will be made to that line.
Recall that tl)fl is the first symbol of fl (cf. the Introduction).
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In most cases, the partition n will be clear from the context and we shall write
simply A B instead ofA _= B (rood n), and [A] instead of [A], {A’ VIA’ =- A
(mod n)}.

DEFINITION 1.2. Any grammar G (V, Z, P, S) is called strict deterministic
if and only if there exists a strict partition n of V. A language L is called a strict
deterministic language if and only if L L(G) for some strict deterministic
grammar G.

Now we give an example which will also be utilized later.
Example 1.1. Let G1 be a grammar with the productions

S aAlaB
A aAa[bC

B aBIbD
C bCla
D bDclc

The blocks of a strict partition are Z, {S}, {A, B}, {C, D}. The language is L(G1)
{a"bka", akb"c"lk, n >- }.
A given strict deterministic grammar has a set of strict partitions associated

with it. Using the meet operation (cf. [14]) we see that for any strict deterministic
grammar there exists a unique minimal strict partition no. In general, there is no
dual concept of a maximal strict partition.

DEFINITION 1.3. For any strict partition n V/} in a given grammar, define

I111 max IV/I,
Vien- {X}

Note that if n __< n2 in the standard lattice ordering of partitions (cf. the Intro-
duction), then Ilnl =< ]ln2][. Thus if G is strict deterministic and if no is the unique
minimal strict partition on G, then {{nol{ -< {{nl[ for any other strict partition of G.

DEFINITION 1.4. Let G be a strict deterministic grammar. We define the degree
of G as the number

deg (G) no
where n0 is the minimal strict partition for G. For any strict deterministic language
L, define its degree as follows"

deg (L) min {deg (G)IG is strict deterministic and L(G) L}.
For later applications we now present a convenient concept used in testing if a

grammar is strict deterministic.
DEFINITION 1.5. Let ,/3 V* and let A, B be two letters in V such that A - B

and we have 7A1 and fl 7B/ for some 7, 1,/1 V*. Then the pair (A, B)
is called the distinguishing pair of and/. A distinguishing pair (A, B) is said to be
terminal if and only if A, B Z.

From Definition 1.5 we can make the following observation.
FACT. Any two strings , fl V* have a distinguishing pair ifand only if is not a

prefix of fi and fl is not a prefix if oz. If they have a distinguishing pair, then it is
unique.
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Next we recall some basic definitions concerning deterministic pushdown
automata.

DEFINITION 1.6. A deterministic pushdown automaton (abbreviated DPDA) is a
7-tuple

(1.1) M (Q,E,F, 6, qo,Zo,F),

where Q is a finite nonempty set, E and F are two alphabets, qo Q, Zo F, F
_
Q

and is a partial function4

(1.2) 6 :Q x XA x F--+p Q x 1-’*

with the property that for any q 6 Q and Z e F,

(1.3) 6(q, A, Z) 4:0 implies 6(q, a, Z) 0 for all a E.

Certain strings over F are interpreted as contents of the pushdown store;in this
interpretation we assume that the bottom of the store is on the left and the top on
the right. If some q, q’ Q, a ZA, Z F and 7 F* satisfy

(1.4) 3(q, a, Z) (q’, 7),

then formula (1.4) is called a move (of DPDA M); in particular, if a A, (1.4) is
called a A-move.

DEFINITION 1.7. LetM bea DPDA of the form (1.1) and let Q x X* x F*.
The yield relation of M, -t - 5 x (or when M is understood), is defined as
follows. For any q, q’ Q, a e Ea, w e X*, e, fl e F* and Z e F,

(1.5) (q, aw, aZ) - (q’, w, aft) if and only if 6(q, a, Z) (q’, fl).

Set in this definition is the configuration space (of M) and its elements are con-
figurations. The configuration (qo, w, Z0) for some we Y* is called the initial
configuration (for w). An instance of the yield relation on the left-hand side of (1.5)
is called a transition (from the first configuration to the second) corresponding to the
move on the right-hand side of (1.5). Any sequence of configurations Co,...,
c,,... (possibly infinite) such that Co c, - and where Co is an
initial configuration, is called a computation (of M).

We now endow a DPDA with an ability to define, or accept, certain languages
over its input alphabet.

DEFINITION 1.8. Let M be a DPDA of the form (1.1). For a given K
_

F*
define the language T(M, K) E* as follows:

(1.6) T(M, K) w e X;*l (qo, w, Zo) - * (q, A, z) for some q e F and z e K}.
In particular, let

To(M T(M, F*),

T(M) T(M, F),

T2(M) T(M, {A}).
The customary notation for To(M is T(M) and for T2(M) in the case when F Q,

4 See the Introduction for our conventions about partial functions. Also recall that YA E U {A}.
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is Null (M)or N(M)(cf. [1715). Acceptance by TI(M)is equivalent to the acceptance
by reinitializing the pushdown store (cf., e.g., [11]) or by empty store if moves on
empty store are allowed (cf., e.g., [12]). It is immediate from (1.6) that for 1, 2,
T(M)

_
To(M). In the nondeterministic case these three types of acceptance lead

to the same family of languages (the context-free languages). This is not, however,
the case for DPDA.

DEFINITION 1.9. We define the following three families of languages for
=0,1,2"

Ai {T(M)IM is a DPDA}.

The languages in A2 were previously studied in 14], 15]. They are identical to
the family of languages generated by strict deterministic grammars 14, Thm. 3.5].
Note that A2 does not even contain all regular events but only the prefix-free ones.

In the remainder of this paper, we shall need to go back and forth between
grammars and automata. First we recall the construction [14] which carries a
DPDA with one final state into a grammar.

DEFINITION 1.10. Let be a DPDA of the form

(1.7)

(i.e., r has a single final state). We define the canonical grammarGofl as follows.
First define

(1.8) G
where V Alph (Q F Q) U Z, S (qo, Zo, qf) and P is defined as follows.6

ForanyaZa, Z,Z,...,ZF,q,p,q,...,qQandk >= 1,

(1.9)

and

(1.10)

qZqk -* a pZlq qIZ2q2 qk- 1Zkqk is in P

if and only if cS(q, a, Z) (p, Zk Z2Z1)

qZpaisinP if and only if 6(q,a,Z)=(p,A).

(No other productions are in P.) Assume that Gft is the reduced form of G. The
canonical grammar is the principal construction which leads from pushdown
automata to grammars. The same construction is used in standard proofs of
equivalence of PDA and context-free grammars (cf., e.g., [17]).

When one has a DPDA with a single final state and G is defined as in
Definition 1.10, then we define an equivalence relation on V such that

A _= B if and only if A, Be E or A (q, Z, q’),
(1.11)

B (q,Z,q") forsomeq, q’,q" eQ, ZeF.

Then if we take V/=, it is shown in [14] that G is strict deterministic under
r. Moreover, it is not hard to see that if Algorithm 1 of [14] is applied to G that

It is not hard to show that for any DPDA M there exists a DPDA M’ such that T2(M Null (M’).
We use the simplified notation qZq’ instead of (q, Z, q’) for elements of Alph(Q x F x Q).
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the minimal strict partition will be computed. Moreover, this partition is precisely
n (cf. [14]). Thus we may state the following fact.

PROPOSITION 1.1. The minimal partition on Ggt is precisely n ofequation (1.11).
We shall also need to construct a canonical DPDA from a grammar as was

done in 14]. For convenience that construction is also reproduced here.
Let G (V, E, P, S) be a grammar with the strict partition

(1.12) n

where m >_ 0 and Vo IS]. We use special indexed symbols Aij for the nonterminals
of G so that for all i, 0 =< <_ m, we have

(1.13) V {A,o, A,,,...,

where ni [V/[. (Note that maxi n I[nll .) Moreover, let Aoo S.
DEFINITION 1.1 1. Let G (V, Z, P, S) be a grammar with strict partition n

for which we use the notation from (1.12) and (1.13). We define the canonical
DPDA Me, jbr G as follows"

M (Q, E, V, 6, qo, Zo, {qo}),(1.14)

where

Q {qj]0 _<_ j < I111 },
F= FI(.J F2

F1 { V/, elA eft for some A e V/and e, fl e V*},

F2 {V, , VIA Bfl for some A e V, B e V and e, fle V*},
Zo [S],A Vo,AeF1,

and 5 is defined by means offour types ofmoves as follows For any V, V e n {Z},
a e V*, a e Z and qj e Q, we have :__

Type 1.5(qo, A, V/, e) (qo, V/, , VV, A) if A aBfl is in P for some A e V,
Be Vand fie V*.

Type 2. 6(qo, a, Vi, ) (qo, Vi, aa) if A earl is in P for some A e V/ and
3eV*.

Type 3. 6(qo A, V/, o) (q, A)if Ai.i o is in P.
Type 4. 6(qj, A, V, a, Vi) (qo, V, aAo).
Otherwise is not defined. Moves of Types 1, 2 and 3 are called detection

moves;the move of Type 4 is called the reduction move.

2. Real-time strict deterministic languages. Null rules allow a device to
"pause" in its processing of an input and do a certain amount of computation
without examining the input. It is of interest to know whether or not this ability
affects the computational power ofa device. Similar questions have been studied in
[5], [12], [13]. We shall comment further on related work after giving some formal
definitions.

DEFINITION 2.1. Let M be a DPDA of the form M (Q, E, F, 6, qo, Zo, F).
M is said to be quasi-real-time if and only if there is an integer >= 0 (called a
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time constant of M) such that for any q, q’ e Q and 7, ’ e F*,

(q, A, 7) k (q,, A, 7’) implies k =< t.

In particular, M is said to be real-time if and only if it has a zero time constant, i.e.,
if and only if 6(q, A, Z) 0 for all q Q and Z F.

A language L is called Ai-(quasi-)real-time if and only if L T/(M) for some
(quasi-)real-time DPDA M, 0, 1, 2.

The term "quasi-real-time" was used in the nondeterministic case in 2], [12].
The concept of real-time computation is widely used; in connection with non-
deterministic PDA it was used in [13] where it was shown that real-time PDA
are as powerful as general nondeterministic PDA. The result also follows easily
(rom the use of Greibach normal form [10]. In the deterministic case, the non-
equivalence of real-time (or quasi-real-time) DPDA and arbitrary DPDA is shown
in I20].

The term "real-time (context-free) language" as a synonym to our term

"Al-real-time language’’7 appears in I12].
It turns out that the family of Ai-quasi-real-time languages coincides with the

family of Ai-real-time for 0, and, with the exception of {A}, for 2. Only
the last case is discussed now, but the other cases will be treated in Theorem 2.4.

THEOREM 2.1. A language L is Az-quasi-real-time if and only if it is A2-real-time
or {A}.

Proof The "if" direction is a direct consequence of the definition and the
fact that {A} Tz(M for any DPDA M with a single move 6(qo, A, Zo) (qy, A)
for some qr F. This DPDA is quasi-real-time (t 1).

For the "only if" direction, let M (Q, E, F, 6, qo, z0, F be a DPDA and
assume M is quasi-real-time with time constant t. One can define an equivalent
real-time DPDA M’ in such a way that (i) the pushdown letters of M’ are codes for
n-tuples (n 2t + 1) of pushdown letters of M and (ii) one move of M’ has the
same effect as a sequence of at most n moves of M. M’ must simulate the writing
and erasing moves of M in its finite state control and must transfer information
to and from its pushdown storage in blocks of size n.

We shall omit the formal construction and proof, merely noting the required
technique is similar to that used in 16]. A similar result is stated without proof in
E2].

We now give a grammatical characterization of A2-real-time languages.
DEFINITION 2.2. Let G be a strict deterministic grammar of the form

(2.2) G ( V, E, P, S)

with minimal strict partition re. G is called a real-time strict deterministic (or simply
real-time) grammar if and only if it is A-free and the following condition is satisfied
for all A, A’, B, B’ N and e, fle V*.

(2.3) If A -, eB and A’ eB’fl, then A A’ (mod z) implies fl A.

Note that if G is a real-time strict deterministic grammar, then for any

Al_real_time languages form an abstract family of deterministic languages in the sense of [3].
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A, A’ N, if A - aB is in P, A’ - aB’fl is in P, and A _= A’, then fl A and either
A A’ and B B’ (so that there is but one rule involved) or B =_ B’.

It is interesting to note that the requirement that r be minimal is necessary in
Definition 2.2. Consider the following example:

S aASlb
AaB

B - aABIaCAIb
CaD

D aADlaCC
and let rto {E, {S}, {A, C}, {B, D}} and r {E, {S}, {A, B, C, D}}. G is a real-
time grammar. If the minimality condition were dropped from Definition 2.2, G
would not be real-time with respect to rc but would be with respect to ro. (We wish
to thank the referee for suggesting this example.)

It is clear from the definition that the reduced form of any real-time grammar
is also real-time.

THEOREM 2.2. A language is a A2-real-time language ifand only ifit is generated
by some reduced real-time grammar.

Proof (only if). We shall show that the canonical grammar Gft from Definition
1.10 is real-time when M is a real-time DPDA. First note that since acceptance is
by final state and empty pushdown, one can restrict attention to DPDA with one
final state and there is no loss of time. 8 By Lemma 3.2 of [1.4], G;t is strict deter-
ministic under the partition r defined in equation (1.11). By the Proposition of that
section, rc is minimal. Now let us recall that Ggt has productions of two types as
defined by (1.9) and (1.10).

By the real-time property of r in both cases we have a 4- A. Thus Ggt is
A-flee and, moreover, in Greibach normal form.9 To prove (1.9) let A- B,
A’ -0 B’fi and assume A (q, Z, q’) _-- (q, Z, q") A’. G;t is in Greibach normal
form, hence 4: A and 1)0 Z. By the determinism of and Definition 1.10 there
is a unique 7 F* (as well as q’ Q) such that 15(q, 1), Z) (q’, 7). Consequently,
lg (zB)--lg () + lg (B’fl). Hence fi- A.

(If). Let L L(G) for some reduced real-time grammar G. Our strategy will
be to modify the canonical DPDA MG (cf. Definition 1.12) in such a way that the
resulting equivalent DPDA Mb will be quasi-real-time. This is sufficient for a
proof that L is a A2-real-time language since the A-flee property of G implies
L 4: {A}. To make it easier to follow the proof, we shall first examine the properties
of MG related to the occurrence of A-moves. We shall use the same notation as in
Definition 1.11. We have defined the b-function of M by means of four types of
moves: Types 1, 3 and 4 are A-moves, and Type 2 is always a non-A-move.
Accordingly, we have distinguished four types of yield relations (cf. Definition

More formally, the DPDA/r with one final state constructed in the proof of Lemma 3.1 of [14]
is real-time if and only if M is real-time this follows directly from the construction.

A grammar G (V, E, P, S) is said to be in Greibach normalform if and only if P
___
(N E V*)

I.J {(S, A)}, i.e., ifand only ifany production of G has the form A a(A N, a6Z ando: 6 V*) or the
form S A.
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1.11)"
(q, aw, Z) - (q’, w, ) if and only if

6(q, a, Z) (q’, e) is a move of Type i, i= 1,2,3,4.

Let c, c’ be two configurations of MG such that

(2.4) c(1 [,-J I--3 U i---4)mc

for some m => 0, where c is the result of a Type 2 move. We are interested in finding
a bound on the number m in (2.4)rowe shall see that such a bound exists but after
suitable modification of M. First we notice that (2.4) can be rewritten in the
following form"

where kli, k2, n >: 0, k 2
q- Zi: (kli " 2) m, and 1-I denotes composition of re-

lations.
CLAIM 1. IfG is a reduced real-time grammar oftheform (2.2) and c, c’ any two

configurations of M6 satisfying a relation of the form (2.5), then k xi 0 for all
and k2 <= INI.

Proof of the claim. By definition, a Type 1 move can be followed by a Type
3 move if and only if there is a A-production in the grammar. Since G is A-free,

ki 0 for all i. Also, k2 consecutive moves of Type can occur if and only if
A =.2- B for some A, B s N and s V*, but since there are only INI nonterminals
and A + A0 is not possible in a reduced strict deterministic grammar [14,
Thm. 2.3], k2 _-< INI (in fact, k 2 117rl[). The claim is proved.

As a consequence of Claim only the number n in (2.5) can be unbounded.
Therefore we restrict our concern to the case c(3 w,)"c’, or more conveniently,

C( I---- 4 I---- 3)no

where c, c’ are two configurations ofM and n >__ 0. Directly from the definition of
moves of Types 3 and 4 we have the following claim.

CIAIM 2. For any qj, ql Q {qo} Vk, Vi rc and o V*,

(2.6) (qj, A, Vk,-er,V)--n 4 ---n 3 (ql, A, A) if and only if

At oAij is a production in G.

Let us call any letter V, , V F a saturated letter if and only if A 0B for
some A V and B V. Denote by Fs the set of all saturated letters (we have

I-’s F2).
CL,IM 3. If Z1 V, , V is saturated and Z2 V, o, Ve F, then A

and j i.

Proof of the claim. This claim is a consequence of property (2.3) of real-time
grammars’since Z is saturated we have A 0B for some A e Vk and B e V" and
since Z2 e 1-" 2 we have A’ --, eBCO for some A’ e V, C e Vj, and 0 e V*. Then by the
strict determinism of G, BCO B’B’ for some B’e N,/’e V*. Bjt/3’ A by (2.3)

o Recall the convention V {Aio,’", A,,} for Ve 7t (cf. (1.13)).
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and hence C B’, fl 0A and V [B’] [C] V by the strict determinism of
G. The claim is proved.

By Claims 2 and 3 any saturated letter on the top of the store is always erased
(never rewritten) and this is realized by a transition of the form 3. Now, for
any saturated letter Z V, e, V e F we can uniquely specify a partial function

(2.7) fz Q -, Q
such that fz(qj) q ifand only ifqj, ql =/= qo and one or the other side ofequivalence
(2.6) holds. We can extend (2.7) to

(2.8) f,’Q p Q

for q e F+ using (2.7) as a basis and defining inductively f,z f,fz, i.e., for any
q e Q, f,z(q) f,(fz(q)) provided fz(q)is defined. Note that there are only a finite
number of distinct functions f,. In fact, I{f.ln e r+ }1 (]QI / 1) IQI.

CLAIM 4. For any q, q’e Q ;7, 7’d F* and n >__ 1,

(q, A, 7)( I-- 3 I-- 4)"(q’, A, 7’) /f and only if
for some r F’ and q’ f,(q).

This claim follows from Claims 2 and 3 by a straightforward induction on n.
Thus the only effect of (- 3 - 4)" is erasing a saturated string of length n from

the store and changing the state of control. Claim 4 gives the basis for the elimina-
tion of an unbounded sequence of A-moves: instead of a saturated string r/ of
length >_ 1, on the store of the modified DPDA Mb appears a single letter f,
representing the function f,.

For completeness we describe formally the construction of M. For this let
MG (Q,E,F, 6, qo,Zo,{qo}) be the canonical DPDA from Definition 1.11.
Define MG as follows"

(2.9) M; (Q’, E, r’, 6’, qo, Zo, {qo}),
where Q’ Q U {qzlZ e Fs} (the new states are added for technical reasons only),
F’= F U Alph {f,lr/e F+ } and 6’ is defined as follows. If A--, eB for some
A e V and B e V, then define

(i) 6’(qo, A, V, e) (qz, m), where Z V, e, V e Fs
(ii) 6’(qz, A, f,) (qo,f.zV, A) for all f, e F’ F, Z V, , V; and
(iii) 6’(qz, A, 7) (qo, 7fz Vk, A), where Z V, e, Vk, and for all 7 e F.

Moreover, for any qj e Q {qo} and f, e F’ F, define
(iv) 6’(qj, A, f,) (f.(q), A).

In all other cases define
(v) 6’(q, a, Z) 6(q, a, Z).

Moves (i), (ii) and (iii) are new special cases of Type 1 moves of M, move (iv) is a
special case of Type 4 moves. We observe that a saturated letter never appears in
the store and--even if some A-moves were addedM is quasi-real-time. It is
easy to see that T.(Mb) Tz(M)" Claim 4 suffices for that. Q.E.D.

It turns out that the Az-real-time languages have a very convenient property
which makes the problem of deciding whether or not they are regular trivial. Let
us first mention that while the regularity of context-free languages is undecidable
17], the same problem for deterministic languages has been shown to be decidable
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by Stearns 22]. However, Stearns’ decision procedure is unsuitable for practical
purposes and is only of theoretical interest. (It is shown that if for a given DPDA M
the language accepted by M is regular, then the number of states ofa corresponding
finite automaton is bounded by an expression of order k""", where k is the number
of pushdown letters and n the number of states of M. Since the equivalence of a
given deterministic language and a given regular set is decidable [8], the decision of
regularity can be based on testing all finite automata of that size or less.) The
property expressed by Theorem 2.3 gives a simple tool for recognizing regular
languages among the Az-real-time languages.

DEFINITION 2.3. A grammar G (V, , P, S) is self-embedding if and only if
there is a nonterminal A N such that A * Afl for some , fl V +.

THEOREM 2.3. Let G be any reduced real-time grammar. Then L(G) is regular if
and only if G is not self-embedding.

Remark. There is a well-known result [4] that L(G) is regular for a non-self-
embedding grammar G. However, if a given grammar is self-embedding, we cannot
say anything about its regularity, in general. Thus the important part of Theorem
2.3 is its "only if" direction. (For an analogous result for so called simple deter-
ministic languages, which are discussed in the next section, cf. [18].)

To prove the theorem we need the following lemma which will have other
applications as well.

LEMMA 2.1. Let G be a reduced real-time grammar of the form (2.2). Assume

(2.10) S uAa

and

(2.11) A vAil
for some A 6N, uE*,a V*,vE + and fl V +.

Then for any n >= 0 and w E*,

(2.12) S * uv"w implies lg(w) >__ n.

Proof Let k, m >__ 0 be such that S uAa and A " vail as in (2.10) and
(2.11) respectively. As a consequence of a multiple application of Lemma 2.2 of
[14] any derivation of the form (2.12) can be rewritten in the form of a left-most
derivation

s uAoo " uvA110
(2.13)

whereAiNando,fiV*fori= 1,...,nandAo_--Aa_= =A,--A.
CLAIM 5. fli 4: A for each i, <= <= n.

Proof of the claim. First note that the derivation A " vA can be written for
some B, C N in the form

(2.14) A "’ vB =:L l)lV2C’ ::n2 vlvzV3Afl,,fl, vAil,

where/3’ - A and m + m + 1 m. Now assume for the sake of contradiction
that fl A for some i, 1 =< =< n. Then we can extract from (2.13)"

(2.15) Ai_ =’
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and since A _= Ai- and using Lemma 2.2 of [14] again we obtain from (2.14) and
(2.15) for some B’, C’ e N,

B’ C’ =":’ A(2.16) A -1 :::n V =:L /)1/)2 /)1/)2/-)3

where B’ B. But then we have B’ vzC’ from (2.16) and B veCfl’ from (2.14),
and by the property (2.3) of real-time grammars, fl’ A. Hence the contradiction
and the claim is proved.

Let us return to (2.13). Since G is A-flee, i* weE+ for 1 _< __< n and
lg(w)>" lg(wi)>n. Q.E.D.

i-1

Proof of Theorem 2.3. Appealing to the remark after the theorem we restrict
ourselves to the "only if" direction. We shall use the following known result from
finite automata theory.

FACT. Let L
_

Z* be a regular language. Then there exists a number n >= such
that any string x L, where lg (x) >__ n, can be written in the form x ylzye, where
Yl, Y2 G *, Z G ]+, lg (zy2) __< n and for all k => O, ylzkY2 L.

The proof of this fact can be found in [1].
Let G be a reduced real-time.grammar which generates a regular language

L L(G). Assume, for the sake of contradiction, that G is self-embedding, i.e.,
that A =* A/3 for some A N and ,/ V+. Since G is.reduced and A-free we
have

S =:,. uAo’,

A

for some u E*, ’ V*, v E +, and/’ V +. By Lemma 2.1 for arbitrary n >_ 0
and w E*,

(2.17) uv"w L implies lg (w) _>_ n.

In particular, let us take n from the Fact above and w the shortest string such that
uv"w L. This definition of w is meaningful since at least one string w’ E* exists
with the property that uv"w’ L for instance, w’ WlW"W3 where w we, w3 E*

’ * /’ * (note that G is reduced)are such thatA*wl, = w2,and w3
Now by (17), lg (w) _> n and if we take x uv"w L in the above Fact we can

find Yl, Y2 ]* and z E + such that x ylzye or, since lg (zye) <__ n <_ lg (w),
we can write x uv"y’lzye for some y’ E*. Then the case k 0 in the Fact yields
lg (Y’lY2) < lg(y’lzye)= lg(w), which contradicts the assumption that w is the
shortest string such that uv"w L. Therefore G is not self-embedding. Q.E.D.

Thus, given a real-time DPDA M, the decision whether T2(M is regular or
not involves only a construction of the canonical grammar G (which has been
shown to be real-time) and examination of the self-embedding property of

It is of some interest to know whether Theorem 2.3 is best possible or whether
it could be extended to the full family of strict deterministic languages. To show
the result to be best possible, one would want to find a reduced self-embedding
strict deterministic grammar generating a regular set. The grammar

S aSAlb
AA
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is such a grammar but the self-embedding is a "trick" because of the A-rules. The
following is a reduced A-free self-embedding strict deterministic grammar G"

S A[BaCIBb

A aAlaBb
B aBalb
C aCIb

But L(G) a*ba*b is regular. Thus Theorem 2.3 cannot be extended to the strict
deterministic grammars.

Our last objective in this section is to prove that the real-time restriction for
deterministic DPDA is essential. It is known [13] that this is not the case for
general PDA.

First we show how Lemma 2.1 and the results of [14] can be used to establish
that a particular language has no real-time grammar.

THEOREM 2.4. Let 52 {a, b, c}. There is no real-time grammar generating the
language L {a"bka", akb"c"[k, n >= 1 (cf Example 1.1).

Proof Assume for the sake of contradiction that G is a real-time grammar of
the form (2.2) generating L, and assume, without loss of generality, that G is
reduced. We shall use the iteration theorem for A2. Let p p(L) be the integer
satisfying the iteration theorem for A2 [15, Thm. 2.2] and consider the string
clPbPp L. Choose a set of positions K {2p + 1, ..., 3p}. Let b (vl, "’, Vs)
be the factorization ofaPbPcp obtained by Theorem 2.2 of [15]. To satisfy conditions
3 and 2’ ofTheorem 2.2 of [15], the components of b must have the following form"
Vl aVbi, v2 bk, v3 bJcr, v4 ck, and v5 =cs,where i,j,s >= O, k,r >= 1 and
+ j r + s p k. Now following exactly the lines of the proof ofTheorem 2.2

of [1 5] we arrive at the following derivation (cf. [1 5, II, (7)])"

S =:,* VlAV =+ vlv2Av4v4 =,+ v v aPbPcp.

Thus we can write
S =. vrAo,

A =t vzAfl
for some a, fl V*. Since v 4: A also fl A. Now the assumptions of Lemma 2.1
are satisfied, and thus for any n >= 0 and w 6 E*,

(2.18) VlVW L implies lg (w) >__ n.

Let us take n > p and w ap and consider the string V lV"zW aPbibk"av L. But
here lg(w)= lg(ap) p < n, in contradiction to (2.1.8). Therefore G is not
real-time. Q.E.D.

Now we show proper containment of the real-time Ai languages in A for
=0,1,2.

THEOREM 2.5. The family of Ai-real-time languages is properly contained in the
family Ai for O, 1, 2.

Proof Consider the following language L"

L {ai’bai2b air-’baircsair-S +’jr >= 1, <= ij for 1 =< j < r, 1 __< s __< r}.



REAL-TIME STRICT DETERMINISTIC LANGUAGES 347

It is clear that L e A2

___
A Ao. But it has been shown in [19] that L cannot be

accepted by any real-time, on-line multitape Turing machine. Thus L is not a
real-time Ai language for 0, 1, 2. Q.E.D.

It is also possible to prove this theorem using the language defined in Lemma
2.2 and our techniques. The present proof is somewhat simpler and we wish to
thank the referee for suggesting it.

3. Simple deterministic languages. In [14] a nontrivial hierarchy of strict
deterministic languages was established. This hierarchy was based on the degree of
a language (cf. 4) which was related to the number of states in a DPDA in [14].
In this section, we shall restrict our attention to the "simplest" class of strict
deterministic languages in the heirarchy of [14], i.e., to the strict deterministic
languages of degree 1.

First we show a convenient characterization of strict deterministic grammars
of degree 1. This characterization makes it easier to recognize these grammars.

THEOREM 3.1. Let G be any grammar. Then G is strict deterministic of degree 1
if and only if A - [fl implies that either fl or , fl have a terminal distinguishing
pair.

Proof (only if). Let G be strict deterministic, deg (G) 1 and let A - [fl,- ft. If , fl have no distinguishing pair, one of them is a (proper) prefix of the
other, which contradicts the strict determinism of G. Let (C, D) be the distinguishing
pair of , ft. Then C D. By definition of distinguishing pairs, C D. If C, D N,
we have a contradiction of deg (G) 1. Hence C, D E.

(If). Assume G has the above property. Recall Algorithm 1 of [14] which tests
a given context-free grammar for the property of being strict deterministic. Now
let us apply that algorithm to G. Starting in Step 1 with partition rc consisting of E
and otherwise only of singletons, the algorithm never reaches Step 6 (Step 5 is
always followed by Step 3 since E r) and thus rc is not altered. The algorithm
halts in Step 8 (Step 4 is never followed by Step 7 since A =- Aj implies A A,
which implies - by the assumption of the indices in the algorithm). Therefore
7t is strict and I111 I1oll 1. Q.E.D.

Next, consider grammars in Greibach normal form9 with the property that
for all A N, a E and , fl V*,

A alafl implies ft.
Following [18] we call such grammars s-grammars. Directly from Theorem 3.1
we see that s-grammars are strict deterministic of degree 1. It has been shown that
s-grammars generate exactly the class of languages defined as follows.

DEFINITION 3.1. A context-free language L is called simple deterministic2 if
and only if L T2(M for some real-time DPDAM with IQI 1.

We shall show that the requirement that the DPDA be real-time is un-
essential.

THEOREM 3.2. L A2 and deg (L) 1 ifand only ifeither L is simpler determin-
istic or L A

Proof. The "if" direction is immediate from Definition 3.1, Theorem 4.1
of [143 and the previously mentioned fact that the language {A} is of degree 1.

11 Recall Definition 1.5.
12 The reader should not confuse this term with "simple LR(k) grammars" defined in [6].
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(Alternatively, we could use our Theorem 3.1 and the result in [18] which was
previously discussed.)

For the "only if" direction, let G be a strict deterministic grammar of degree 1
and let L(G) 4: {A}. We can assume, without loss of generality, that G is A-free
(cf. the Fact following Definition 4.1 of [14]). We shall show that G satisfies (2.3)
from Definition 2.2. But this is immediate from the assumption that deg (G) 1,
i.e., I1oll 1, since then A A’ (mod no) implies A A, and B B’ (mod rCo)
(which follows from the strictness off,o) implies B B. Now fl A by the strictness
of rCo. Thus we have (2;3) and G is real-time. The result then follows from Theorem
2.2 and Definition 3.1. Q.E.D.

COROLLARY. For the case ofdegree 1, thefamily ofA2-quasi-real-time languages
coincides with the family A2

Proof This result is a direct consequence of Theorems 3.2 and 2.1. Q.E.D.
Theorem 3.2 is an interesting result because it shows that the simple deter-

ministic languages, which have several interesting properties (cf. [18], [17]), can
be placed at the beginning ofa natural hierarchy of strict deterministic languages. 13

One of the most important mathematical properties of simple deterministic
languages is that they have a rather elegant procedure for deciding their equivalence
(cf. [18]). 14 It turns out that the idea of their procedure can be extended to a more
general case when one of the grammars can be a general strict deterministic
grammar. Since the presentation and rigorous proof of such a procedure would
require a complex development, we present the result as a proposition without
proof.

PROPOSITION. It is decidable whether two deterministic languages, one of which
is simple deterministic, are equivalent.

In this proposition, languages are supposed to be presented in the form of
DPDA or strict deterministic grammars (for their end-marked version; note that
the equivalence problem for Ao is logically the same as for A2).

The above proposition may be an approach to a new attack on the
equivalence problem for deterministic languages.
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INFIX TO PREFIX TRANSLATION:
THE INSUFFICIENCY OF A PUSHDOWN STACK*

EDWARD M. REINGOLD"

Abstract. The permutations of the input string achievable by an algorithm which uses a single
pushdown stack and M random access storage locations are characterized, and the characterization
is used to show that no such algorithm can translate arithmetic expressions from infix to prefix.

Key words. Permutations, pushdown stack, Polish prefix.

There is a well-known algorithm which reads infix arithmetic expressions
from left to right, one character at a time up to an end-marker, and, using a push-
down stack, produces from left to right, one character at a time, the suffix form of
the expressions; see, for example, [5, 1.2]. The essence of this algorithm is that it
simply shuffles the characters about between the input string, the pushdown
stack, and the output string. There is, however, no known corresponding algorithm
for translating infix into prefix form, and the motivation for this note is to show
that such an algorithm does not exist. In fact, we go much further and completely
characterize the extent to which such algorithms can rearrange their input strings.
The result on infix to prefix translation follows as a corollary.

The model of algorithms which we will allow is a variant of a one-way, deter-
ministic, finite state pushdown transducer whose finite input, output, and stack
alphabets coincide. Rather than defining this formally as a 7-tuple and basing our
proofs on the various transition functions, output functions, etc., we will give more
informal (though no less correct) proofs and refer the unsatisfied reader to Ginsburg
and Rose [2, 3] for machinery needed to formalize the definitions and the argu-
ments.

Informally, then, this model of algorithms can perform only the following
kinds of steps (a) It can read the input string one character at a time from left to
right until it reaches an end-marker. (b) The characterread from the input may be
put directly into the output, which is also produced one character at a time from
left to right, or it may be put on the top of a pushdown stack. (c) At any time, the
only element accessible on the stack is the top element which can, if desired, be
popped off the stack allowing access to the second element in the stack. The
element popped off the stack can be thrown away, or it can be put into the output
string. Once a symbol has been put in the output string it is forever after inaccessible
and immutable. Since the actions the algorithm takes can only rearrange the input
string or delete characters from it, we call this model a pushdown permuter, or p.d.p.
for short. A p.d.p, is nothing more than a control for a "switchyard" arrangement
between the input string, the stack, and the output string.

* Received by the editors June 28, 1972, and in revised form September 25, 1972.

" Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana,
Illinois 61801. This work was completed while the author was spending six weeks at the IBM Thomas
J. Watson Research Center, Yorktown Heights, New York. It was also supported in part by the
National Science Foundation under Grant GJ-31222.
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We are interested in which permutations SplSp2"’’Spn of the input string
sis2"" s,, can be produced as the output string. To simplify the notation we
consider 1 2... n to be the input string and pip2 p, to be the output string.
Knuth [4, 2.2.1, exercise 5] has shown that if the algorithm can have access to
nothing except the top stack symbol, then pip2 P, can be produced if and only
if there is no subsequence PiPjPk of PiP2 P, for which Pi > Pk > Pj. For some
extensions of this result to networks of stacks and queues, instead of only a single
stack, see Tarjan [6] and Even and Itai [1].

The main theorem of this note generalizes the one stated in the previous
paragraph to the case in which some fixed number of symbols can be stored in a
random access memory, in addition to the stack. This assumption is reasonable
when dealing with computer algorithms (our motivation) and it corresponds to the
fact that in a computer program we can have, in addition to a stack, any fixed
number of storage locations. Since the number of locations must be finite, it is
clear that arbitrarily large amounts of information cannot be retained. We assume
that there is a memory ofM random access cells, each ofwhich can hold at most one
symbol, and we assume further that no other symbols besides these M can be
stored outside of the pushdown stack.

THEOREM. A p.d.p, with M memory cells can permute the input string 1 2... n
to PlPz’"P, if and only if there is no subsequence xyl YM+lZl ZM+I of
PlP2 Pn such that for all and j, x > zi > yj.

Before proving this theorem, let us see one of its consequences. It turns out
that the class of permutations required to translate infix expressions to their
prefix equivalents contains some of these unachievable permutations. More
precisely, we have the following corollary.

COROLLARY. There is no p.d.p, which reads infix expressions over the alphabet
{a, b, +, *, (,)} and translates them into prefix form.

Proof Suppose such a p.d.p, does exist, and let M be the number of random
access cells which it has. Consider the input string

(...(((a + a)* a + a ...)* a 4- b)* b ...)* b 4- b
2 3 4. 5 6 4n 4.n+2 4.n+4 8n 8n+2

4n+l 4n+3 4.n+5 8n+l 8n+3

Translating this expression into prefix form requires permuting it to +* + *
+ * + aa abb b. Any such permutation must have as a subsequence

8n + 2 rtl(1,3, 5,..., 4n 1) rc2(4n + 3,4n + 5,..., 8n + 1)

(we are ignoring the parentheses), where re1 and z2 are permutations of 2n symbols.
By the theorem then, at least 2n memory cells are needed for the translation, and
2n can be made larger than any given M by considering a sufficiently long expression
of the type illustrated.

A stronger version of the result in this corollary was first observed by Lewis
and Stearns [4] who gave an outline of a proof.

Proof of Theorem. For a permutation PlP2 ""P, of 2... n consider the
p.d.p, which behaves as follows:at each input symbol the p.d.p, places into a

We define PilPi2 Pik to be a subsequence of PlP2""Pn provided that __< < < <= n.
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vacant memory cell, if one exists, otherwise it examines and the symbols in the
M memory cells, and, of those M + 1 symbols, it puts the one which appears
right-most in plp2 Pn onto the stack. If at any point plp2 Pk has been put
into the output and Pk + is in one of the memory cells, is at the top of the stack, or is
the next symbol in the input string, then Pk + is put into the output and if a memory
cell is vacated, it is filled with the top symbol in the pushdown stack, which is
popped up. If there are no more input symbols, then, since we kept the left-most
occurring symbols in the memory cells, we put them into the output in the appro-
priate order, filling the vacated cells with symbols taken from the top of the push-
down stack. This process continues until all of the symbols have been put into the
output, or, perhaps, until the p.d.p, gets stuck with all memory cells filled and the
symbol which must be put next into the output inaccessible on the stack. We must
verify that if plp2 Pn has the stated property, then the p.d.p, does not get stuck;
clearly, if it does not get stuck, it will produce pip2 P, from 2 n.

Suppose at some point the p.d.p, gets stuck with all memory cells filled and the
symbol u, which must be put into the output next, inaccessible below the top of the
stack; we will show that this implies the existence of a subsequence which cannot
exist by hypothesis. Consider the p.d.p, at the time the symbol u is put into the
stack for the last time, never to come out again, and call the contents of the M
memory cells at that time y, Y2, Yt. Since the Yi stay in the memory cells
while u is put into the stack, they must precede u in PP2 Pn, and since the p.d.p.
does not get stuck until trying to put u into the output, the Yi are all in the output
at the time the p.d.p, does get stuck. Let x be the largest symbol in the output
preceding all of the yi at the time the p.d.p, gets stuck. Clearly x > Yi and x > u
because at the time u goes into the stack for the last time the p.d.p, is "waiting"
for some symbol still in the input while u and the Yi have already been read. Consider
the contents of the stack at the time x is put into the output: above u the stack
must have at least M + 1 symbols zl, ..., zt + which follow u in PiP2 Pn but
which were read from the input before x and after u and the y; otherwise u would
be accessible in the memory or at the top of the stack after the Yi have been put into
the output, contradicting the fact that the p.d.p, got stuck when u was to be put
into the output. Letting Yt+l u, we have a subsequence xyl yt+xzl

zM+l satisfying the proper ordering conditions on the x, yi, zj, contradicting the
hypothesis that no such s.ubsequence existed. Thus the p.d.p, could not have
gotten stuck.

To prove the converse, suppose that a subsequence xya Yt + lZl zt +
with the stated order properties does exist. Then since x > y; and x > zj, all of
the 2M + 2 Yi and zj must have been read and stored before we read x and put it
into the output. Now since there are M + 1 y, they cannot be stored entirely
within the M memory cells, and since the Yi precede the zj in the input, there must
be at least one of the Yi beneath some of the zj on the stack, say Yr, at the time x
is put into the output. Since there are M + zj, they cannot be stored entirely
within the M memory cells, and thus yr is inaccessible until some ofthe zj have been
put into the output, contradicting the fact that y must precede all of the zj in the
permutation. Thus a p.d.p, cannot obtain PiP2 P, from 2 n if it has fewer
than M memory cells.
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